Thermwood Signs Agreement with Navy's Fleet Readiness Center East

Posted by Duane Marrett on Fri, Jan 06, 2017

Tags: Thermwood, 3D printing, LSAM, 3D Print, Thermwood LSAM, Navy, Agreement

Thermwood Corporation

Thermwood Corporation of Dale, Indiana has signed a formal Cooperative Research and Development Agreement with Fleet Readiness Center East located at Marine Corps Air Station Cherry Point, N.C., and part of the Naval Air Systems Command, to conduct a two-year, joint technology development effort centered on Thermwood’s emerging Large Scale Additive Manufacturing (LSAM) technology.

Thermwood’s LSAM machines are large-sized industrial additive manufacturing or three-dimensional printing machines that are available in sizes up to 100 feet long. These systems use a “near-net-shape” approach for making parts in which parts are first 3D printed at high speed to a size slightly larger than needed and then trimmed to final net size and shape. Thermwood’s LSAM machine consolidates printing and machining on the same machine using dual gantries. Dual controls allow print and trim operations to be performed simultaneously, each on different ends of the table.

“We are excited to work with the FRC East and are confident that, working together, we can achieve significant advances and results,” said Thermwood Founder, CEO and Chairman Ken Susnjara. “I am confident that this program will benefit us both while further advancing the state of the art.”

Thermwood has been in a continuous research and development program developing additive manufacturing equipment and technology, and in September announced a line of large scale additive manufacturing systems called LSAM. The dual-gantry, high-wall machines are available in sizes from 10-foot-by-10-foot to 10-foot to more than 100-foot with print capability from 150 to 500 pounds per hour.

3D Print and Trim on the Same LSAM Machine 

 About Thermwood Corporation:

Thermwood Corporation, located in Southern Indiana and established in 1969, offers both three & five axis CNC machining centers ideally suited for the production, fabrication & trimming of wood, plastics, non-ferrous metals, composites and other advanced materials.  Thermwood also offers a Large Scale Additive Manufacturing (LSAM) system for 3D printing reinforced thermoplastic composite materials for producing industrial tooling, molds, patterns, masters, plugs and fixtures for various industries.  Thermwood is deeply involved in CNC and Additive Manufacturing technologies and development, incorporating a high level of smart control technology in its products. 

About Fleet Readiness Center East:

For more than 60 years, the Fleet Readiness Center (FRC) East aboard MCAS Cherry Point, N.C., has played an important part in national defense.  Our workforce has earned a reputation of excellence in providing world-class maintenance, engineering and logistics support for Navy and Marine Corps aviation, as well as other armed services, federal agencies and foreign governments. Our skilled workforce uses state-of-the-art technology to ensure that FRC East is without equal in providing quality, cost-effective support. 

Fleet Readiness Center East

Thermwood LSAM Produces Solid, Void-free Parts 

About the Thermwood LSAM

About the Thermwood LSAM 

Click for More Info on the Thermwood LSAM

Thermwood Adds Thermographic Imaging to its Additive Manufacturing Machines

Posted by Duane Marrett on Tue, Nov 29, 2016

Tags: Thermwood, Video, Monitoring, 3D printing, LSAM, 3D Print, Thermographic, Thermwood LSAM, Camera

Thermwood has added thermographic imaging as a standard feature to our large scale additive manufacturing machines (which we call LSAM "L-Sam"). This addition makes it easier to adjust and control the printing process, resulting in the best possible printed structures.  

Know and Control the Temperature

In order to print high quality, void free large scale 3D printed structures, the previous layer must be cool enough to support the new layer without distortioin, but must also be warm enough to fuse completely with the new layer as it is applied. To accomplish this, we must first know and be able to control the temperature of the surface throughout the printing process. There is a narrow range of temperatures for each material where 3D printing is optimal. The goal is to continuously operate within that range.

Real-time Full Color Thermal Image of the Part
 Thermwood LSAM Real-time Full Color Thermal Image of the Part

Thermwood’s new thermographic imaging system shows the operator a full color thermal image of the part as it is being printed. In this image, different colors depict different surface temperatures of the part. With our system, a green color, is assigned to the ideal range of temperatures for the material being printed. The thermal image is displayed on the control screen in a movable, resizable window. The goal is to continuously print on green. 

Easily Adjust Print Speed and Temperature

Easily Adjust Print Speed and Temperature

Once print temperatures are known and the ideal print temperature can be identified, Thermwood’s print head control makes it easy to adjust printing parameters to achieve the ideal print surface temperature. If the part becomes too hot, fan cooling can be increased or print speed can be reduced to allow more cooling time between layers. If the part temperature becomes too cool, print speed can be increased or cooling can be reduced. 

LSAM High-Output Print Heads Are Important

Thermwood’s high output print heads are also important to quality printing of large parts. In the past, trying to print large parts with low output print heads presented a different thermal problem. Slow print speeds prevented the print head from returning to a point before it becomes too cool to achieve a proper layer to layer bond. With Thermwood’s high output print heads (our largest prints up to 500 lbs/hr) this is no longer a problem. Really good quality large thermoplastic composite parts can be made. Our new thermographic imaging system provides temperature guidance and helps the operator to consistently achieve the desired results. 

Three Different Thermographic Camera Mounting Locations

Three Different Thermographic Camera Mounting LocationsThe thermographic camera can be mounted in three different locations. The first is a fixed position on a stand, inside the machine, looking at the part. The second mounting position is on the print gantry. This works well for parts that are too large to view as a single image. The camera can also be mounted to the print head itself, for special applications. Image output from the camera is integrated with Thermwood’s print gantry CNC control and the full color temperature image is displayed on a resizable window right on the control display itself. A touch screen allows the operator to touch any point on the image and read the exact temperature of that point. 

LSAM Produces Solid, Void-free Parts

Thermwood LSAM Produces Solid, Void-free Parts

Using this technology, Thermwood has been able to produce large tools that are solid and void free enough to maintain vacuum without sealing or surface coating. This simplifies production of the tool, allowing accurate machining of the surface without having to deal with distortions that might be caused by variations in the thickness of a coating. 

Print and Trim on the Same Machine

3D Print and Trim on the Same LSAM Machine

Thermwood offers a line of dual gantry additive manufacturing machines which both print and trim parts on the same machine. These machines can be up to 100 feet long with print head output rates from 150 to 500 pounds per hour.  


About the Thermwood LSAM

About the Thermwood LSAM

The Thermwood LSAM is used to produce large to very large sized components from reinforced thermoplastic composite materials.

Although suitable for producing a wide variety of components, Thermwood is focusing on producing industrial tooling, masters, patterns, molds and production fixtures for a variety of industries including aerospace, automotive, foundry and boating.  

Click for More Info on the Thermwood LSAM

Thermwood LSAM Time-Lapse Video 3D Printing and Trimming Mold

Posted by Duane Marrett on Thu, Oct 13, 2016

Tags: Thermwood, Video, 3D printing, LSAM, 3D Print, Thermwood LSAM

Time-lapse Video 3D Printing/Trimming a Mold on the LSAM

Here we present a time-lapse video demonstrating the Thermwood LSAM 3D printing two parts of a mold at once and then trimming. 

About the Thermwood LSAM

thermwood_lsam_2016_3.jpg

The Thermwood LSAM is used to produce large to very large sized components from reinforced thermoplastic composite materials.

Although suitable for producing a wide variety of components, Thermwood is focusing on producing industrial tooling, masters, patterns, molds and production fixtures for a variety of industries including aerospace, automotive, foundry and boating.  


Click for More Info on the Thermwood LSAM

Time-Lapse Video of Thermwood LSAM 3D Printing Two Parts Simultaneously

Posted by Duane Marrett on Thu, Oct 06, 2016

Tags: Thermwood, Video, 3D printing, LSAM, 3D Print, Thermwood LSAM

Time-lapse Video

Here we present a time-lapse video demonstrating the Thermwood LSAM 3D printing two parts simultaneously. 

About the Thermwood LSAM

Thermwood LSAM Time-Lapse Video 3D Printing Two Parts Simultaneously

The Thermwood LSAM is used to produce large to very large sized components from reinforced thermoplastic composite materials.

Although suitable for producing a wide variety of components, Thermwood is focusing on producing industrial tooling, masters, patterns, molds and production fixtures for a variety of industries including aerospace, automotive, foundry and boating.  


Request More Information from Thermwood