LSAM Research Lab at Purdue Enables CERN Particle Collider Upgrade Prototyping

Posted by Duane Marrett on Tue, Apr 12, 2022

Tags: Thermwood, Announcements, Purdue, Thermwood LSAM, Thermwood LSAM Research Laboratory

Purdue CMSC, in collaboration with Purdue Silicon Detector Laboratory (PSDL), is designing, prototyping, testing, and fabricating composite support structures for CERN’s Large Hadron Collider (LHC) CMS and ATLAS experiments. This is part of the particle collider’s High Luminosity upgrade, with installation of final components in 2026-27. The Thermwood LSAM 105 Additive Printer and five-axis LSAM Trim router at the Purdue LSAM Research Laboratory have enabled rapid large-scale printing and machining of trimming fixtures for the high precision composite tube structures. The 1m long, 208mm radius trimming fixture was printed on the LSAM with Acrylonitrile Butadiene Styrene (ABS) reinforced with 20% by weight of carbon fiber.

Thermwood LSAM Research Laboratory at Purdue University

This 914mm long prototype of the CMS upgrade inner tracker support tube will allow project partners at national labs, universities around the world, and CERN to begin installation tests of their structural and detection components. Individual components installed into this support tube are expected to be positioned within +/- 0.5mm or less, so accurate machining of interface features is critical. This kind of precision at large scale is made possible, economical, and convenient with the aid of systems like LSAM.

Printing Details

Printing Details

Since critical surfaces would be machined later, and to increase production speed for the prismatic geometry, the tool was split into two vertically-printed segments. The halves were bonded with adhesive and dowel pins for joint strength and stability.

Printing Details - closer look

Machining Details

The faces that would become the trimming fixture base were machined to the flatness required for fixturing later. The printed, bonded fixture was then mounted on pedestals in the LSAM Additive Trimmer and the surface was machined to fit the nominal inner surface shape of the composites half-cylinders to be trimmed. Edge finding and reference features were machined into the trimming fixture to allow proper centering of the cured composite part.

Printing detail - closeup

Using this printed and machined fixture, the composite part edges were trimmed, interface holes drilled, mating surfaces machined flat and a scarf joint for joining the two half cylinders was created. The precision trimmed composite halves were then able to be bonded together.

Machining on the LSAM Trim

LSAM Trim Machining - closeup

Final Result

The final tube, 3.2m long, has to support 140kg of mass while only allowing sub millimeter deflections to occur. Purdue CMSC and PSDL will also be designing, fabricating, or testing other composite support structures for the CERN LHC upgrade as small as 0.5mm sheet goods and as large as 2.4m x 5m sandwich panel tubes. It is planned for the LSAM system to be utilized to create tooling and some final components for these other structures.

Finished result! 

About CMSC

The Composites Manufacturing and Simulation Center (CMSC) of the College of Engineering and the Purdue Polytechnic are located in over 30,000 square feet of the Indiana Manufacturing Institute building. CMSC consists of faculty experts in composites manufacturing, a professional staff of doctoral degree engineers, a support staff and research students in doctoral, masters and bachelor’s degree programs of the Schools Aeronautics and Astronautics, Chemical Engineering and Materials Engineering, as well as, the Department of Aviation Technology in the Polytechnic.

LSAM RESEARCH LAB AT PURDUE UNIVERSITY CMSC

A comprehensive set of laboratories is available at the IMI for the study of composites manufacturing processes, characterization of composite materials, and the validation of simulation software essential to development and verification of the digital twin concepts in composite manufacture and performance. Focus specialties include extrusion deposition additive manufacturing, composites autoclave processing of continuous fiber systems, compression and injection molding of discontinuous fiber composites, prepreg impregnation, infusion molding, sheet forming, complex mold-forming and hybrid continuous/discontinuous fiber systems. Workflow simulations are being developed to provide for end-to-end digital twins of these manufacturing processes. Accordingly, manufacturing informed performance predictions are a direct outcome of these workflow analyses.

About Thermwood Corporation

Thermwood Corporate HeadquartersThermwood is a US based, multinational, diversified CNC machinery manufacturer that markets its products and services through offices in 11 countries. Thermwood is the oldest manufacturer of highly flexible 3 & 5 axis high-speed machining centers known as CNC routers.

Thermwood has also become the technology and market leader in large scale additive manufacturing systems for thermoplastic composite molds, tooling, patterns and parts with its line of LSAM (Large Scale Additive Manufacturing) machines that both 3D print and trim on the same machine. These are some of the largest and most capable additive manufacturing systems ever produced and are marketed to major companies in the aerospace, marine, automotive and foundry industries as well as military, government and defense contractors.

 

Purdue University to Establish Thermwood LSAM Research Laboratory

Posted by Duane Marrett on Tue, Apr 13, 2021

Tags: Thermwood, Announcements, Purdue, Thermwood LSAM, Thermwood LSAM Research Laboratory

Purdue University’s Composites Manufacturing Simulation Center (CMSC) and Thermwood Corporation have agreed to establish a large scale additive manufacturing laboratory to perform industry-funded research into large scale composite thermoplastic additive manufacturing.

Purdue Composites Manufacturing and Simulation Center

Thermwood LSAM Logo

The new facility will be located in Purdue’s Indiana Manufacturing Institute located in the Purdue Research Park in West Lafayette, Indiana and will be staffed and operated by Purdue CMSC personnel. The official name for the new facility is the Thermwood LSAM Research Laboratory at Purdue University”.

LSAM Additive Printer (10'x5')

Thermwood LSAM Additive Printer 10'x5'

About the Thermwood LSAM Reseach Laboratory at Purdue University

The new laboratory will be equipped with an LSAM 105 (ten-five) Large Scale Additive Printer and a corresponding 5 axis LSAM Additive Trimmer plus a variety of support systems. This installation is capable of printing and trimming complex geometries up to five feet by ten feet by four feet tall at print rates of up to 200 lbs. per hour. Commercial maximum print temperature for LSAM printers is usually limited to 450oC, however, this particular system has been modified to allow testing at even higher temperatures for experimentation with innovations in materials normally not used in additive manufacturing.

This effort will be enhanced with the newly announced ability of Thermwood’s LSAM large scale additive manufacturing systems to measure and precisely control the temperature of a printed layer at the instant a new layer is deposited. This will support research into the very core of the additive print process and will serve to provide validation of Purdue’s extensive additive manufacturing simulation capabilities for large scale additive manufacturing.


Not only will this effort improve the overall quality of large scale additive printing but it should also increase our knowledge and understanding of the basic process of fusing layers together into a homogeneous structure”
says Ken Susnjara, Founder, Chairman and CEO of Thermwood.


Extrusion deposition composites additive manufacturing is a major innovation that will contribute to the development of tailored products with unique performance and just in time availability.”  
Adds Dr. R. Byron Pipes, Executive Director of Purdue’s Composite Manufacturing & Simulation Center, the research organization where the LSAM system will be installed.


Purdue plans to partner with industry to provide services to enhance, encourage and expand the adoption of large-scale additive manufacturing for diverse industrial applications. They also plan to work with polymer suppliers to refine formulations and determine the ideal processing parameters necessary to produce the absolute highest quality large scale printed parts possible.

Collaborative efforts of this type bring together diverse organizations that each specialize in different aspects of this emerging technology and often produce results that none of the participants could possibly achieve on their own. Both Purdue and Thermwood are confident that this will be the outcome of their collaborative effort.

About the Composites Manufacturing and Simulation Center

The Composites Manufacturing and Simulation Center (CMSC) of the College of Engineering and the Purdue Polytechnic are located in over 30,000 square feet of the Indiana Manufacturing Institute building. CMSC consists of faculty experts in composites manufacturing, a professional staff of doctoral degree engineers, a support staff and research students in doctoral, masters and bachelor’s degree programs of the Schools Aeronautics and Astronautics, Chemical Engineering and Materials Engineering, as well as, the Department of Aviation Technology in the Polytechnic.

Purdue Manufacturing and Composites Research Center

A comprehensive set of laboratories is available at the IMI for the study of composites manufacturing processes, characterization of composite materials, and the validation of simulation software essential to development and verification of the digital twin concepts in composite manufacture and performance. Focus specialties include extrusion deposition additive manufacturing, composites autoclave processing of continuous fiber systems, compression and injection molding of discontinuous fiber composites, prepreg impregnation, infusion molding, sheet forming, complex mold-forming and hybrid continuous/discontinuous fiber systems. Workflow simulations are being developed to provide for end-to-end digital twins of these manufacturing processes. Accordingly, manufacturing informed performance predictions are a direct outcome of these workflow analyses.

3DEXPERIENCE Education Center of Excellence in Advanced Composites

To advance the development of digital twin, digital thread and model-based engineering, Dassault Systèmes and CMSC established the 3DEXPERIENCE Education Center of Excellence in Advanced Composites on October 28, 2020. The simulation center was founded on a seven-year partnership between Purdue University and Dassault Systèmes (2013-2020) and it is expected that this new engagement will bring significant benefits to the new relationship with Thermwood as the partners work together to bring the advantages of the digital age to society.

3DEXPERIENCE Platform and Thermwood LSAM

Together, they will advance the digital enterprise by developing the human talent essential to this new paradigm and by utilizing the Thermwood LSAM technology and the 3DEXPERIENCE platform to exercise digital twins of complex composites manufacturing and performance to demonstrate the power to predict phenomena that are understood today only by empirical experiences. The Partnership will work together to introduce these concepts to a wide range of industries within the advanced composites community from the original equipment manufacturer level to the supply chain industries. The philosophy of these relationships will be to create a learning environment at multiple levels – from advanced research in manufacturing and performance of advanced composites to the engagement of students at all levels needed to build the workforce of the future for Industry 4.0.

LSAM Info Request