Thermwood LSAM Additive Printer 510 LIVE Printing at JEC World 2025

Posted by Duane Marrett on Mon, Jan 13, 2025

Tags: Thermwood, Announcements, Trade Shows, Purdue, Live Demonstrations, Large Scale, Thermwood LSAM, SABIC, LSAM Additive Printers, Techmer PM, JEC World

Thermwood LSAM

Thermwood LSAM Additive Printer 510 LIVE Printing at JEC World 2025

Thermwood will demonstrate the capabilities of its LSAM technology by LIVE-printing a double-sided RTM mold for an underwater tidal turbine blade each day of the event. This will all happen in the LIVE Demo Area located in Hall 6 at JEC World 2025 in Paris, France on March 4th-6th. The mold pairs will be printed on the LSAM AP 510 Additive Printer using advanced carbon fiber reinforced materials, with a different material supplier featured each day (Sabic and Techmer PM). Once printed, these mold pairs will be shipped from the event, machined, and subsequently used to produce actual tidal turbine blades.


Daily Interactive Demonstration

In addition to LIVE printing throughout the day, we will also present an interactive demonstration twice per day that will allow participants to see firsthand how LSAM technology prints and finishes large-scale thermoplastic parts with exceptional precision, speed, and efficiency. Additionally, we will highlight the wide range of material options and design flexibility available, as well as some of the patented features that set LSAM systems apart as the top choice in the industry. Topics covered will be the collaborative projects, ongoing research initiatives and illuminating case studies that help accelerate advancements in comprehensive knowledge and future innovation within the field.

 We will also have our regular booth staffed by our knowledgeable sales team that can help answer any questions you might have (Hall 6 P52).

LSAM Research Laboratory at Purdue ADDITIVE3D Software on Display

Eduardo Barocio, Director of Composites Additive Manufacturing and Simulation (CAMS) Consortium at Purdue University's Composite Manufacturing & Simulation Center will also be on hand to demonstrate their Additive3D software, a powerful tool that not only simulates workflow, but also predicts the printing and as-manufactured performance of parts produced through extrusion deposition additive manufacturing.  

Additive3D Software from LSAM Research Laboratory at Purdue University


About the LSAM Additive Printer

The LSAM Additive Printer systems are single gantry, moving table configurations and are available in two table sizes, 5’x5’ and 5’x10’. The 5’x10’ table is available in two configurations, 5’ wide with 10’ of front to back motion and 10’ wide with 5’ of front to back motion. Choice of configuration depends on several factors, fitting it existing factory floor space is one factor.

The specially designed, highly rigid tab and slot, structural steel gantry also incorporates a fume extraction system that pulls print fumes through specially designed activated charcoal filters to remove them and “sweeten” the air.

LSAM Additive Printers use the exact same print head mechanism as all the others, including the largest LSAM Systems which means that they produce the same amazing print quality that has made LSAM the leader in large scale additive printing. They also use the same highly advanced Ultra 6 control with all its exclusive, patented print features and capability.

The systems come standard with a single hopper polymer dryer for applications that don’t change print material very often. For installations that print a wider variety of materials, a dual hopper dryer is available as an option.

An enclosure that surrounds the machine is also available. The machine with the full enclosure can also be built to meet European CE standards.

Thermwood LSAM Additive Printer 510 LIVE Printing at JEC World 2024

Posted by Duane Marrett on Thu, Jan 04, 2024

Tags: Thermwood, Announcements, Trade Shows, Purdue, Live Demonstrations, Large Scale, Thermwood LSAM, SABIC, LSAM Additive Printers, Airtech, Techmer PM, JEC World

Thermwood LSAM

Thermwood LSAM Additive Printer 510 LIVE Printing at JEC World 2024

Thermwood will be LIVE printing an autoclave capable tool for composite layup of an airplane engine air inlet duct on an LSAM Additive Printer 510 in the LIVE Demo Area located in Hall 6 at JEC World 2024 in Paris, France on March 5th-7th. We will print a new tool each day with material from a different material supplier (Sabic LNP™ THERMOCOMP™ AM EC004EXAR1, Airtech Dahltram I-350CF, and Techmer PM PESU-1810).


Daily Interactive Demonstration

In addition to LIVE printing throughout the day, we will also present an interactive demonstration once per day that will allow participants to see a real-world application of creating high-temp tooling with an LSAM system. Topics covered will be the collaborative projects, ongoing research initiatives and illuminating case studies that help accelerate advancements in comprehensive knowledge and future innovation within the field.  Participants will have the unique opportunity to pose questions to our industry experts and gain valuable insights into how LSAM can elevate and optimize their production process. This live demonstration will help bridge the gap between theory and practical application and help understand the full potential of LSAM and how it can help enhance productivity and innovation. We will also have our regular booth staffed by our knowledgeable sales team that can help answer any questions you might have (Hall 6 P52).

LSAM Research Laboratory at Purdue ADDITIVE3D Software on Display

Eduardo Barocio, Assistant Director of Additive Manufacturing at Purdue University's Composite Manufacturing & Simulation Center will also be on hand to demonstrate their Additive3D software, a powerful tool that not only simulates workflow, but also predicts the printing and as-manufactured performance of parts produced through extrusion deposition additive manufacturing.  

Additive3D Software from LSAM Research Laboratory at Purdue University


About the LSAM Additive Printer

The LSAM Additive Printer systems are single gantry, moving table configurations and are available in two table sizes, 5’x5’ and 5’x10’. The 5’x10’ table is available in two configurations, 5’ wide with 10’ of front to back motion and 10’ wide with 5’ of front to back motion. Choice of configuration depends on several factors, fitting it existing factory floor space is one factor.

The specially designed, highly rigid tab and slot, structural steel gantry also incorporates a fume extraction system that pulls print fumes through specially designed activated charcoal filters to remove them and “sweeten” the air.

LSAM Additive Printers use the exact same print head mechanism as all the others, including the largest LSAM Systems which means that they produce the same amazing print quality that has made LSAM the leader in large scale additive printing. They also use the same highly advanced Ultra 6 control with all its exclusive, patented print features and capability.

The systems come standard with a single hopper polymer dryer for applications that don’t change print material very often. For installations that print a wider variety of materials, a dual hopper dryer is available as an option.

An enclosure that surrounds the machine is also available. The machine with the full enclosure can also be built to meet European CE standards.

DOE Funds 3D Printing of Wind Blade Tooling Program

Posted by Duane Marrett on Fri, Oct 13, 2023

Tags: Announcements, Purdue, LSAM, Dimensional Innovations, LSAM Additive Printers, Techmer PM, LSAM AP

The Thermwood LSAM Additive Manufacturing LaboratoryPurdue's Thermwood LSAM Research Lab includes an LSAM AP 105 Printer and LSAM Trim 105 5 Axis CNC router.

Award to Develop Additive Manufacturing of Modular Wind Blades

The U.S. Department of Energy (DOE) has announced an award of $2,849,000 to the Composites Manufacturing Simulation Center (CMSC) of Purdue University and its industry partners, including Thermwood, TPI Composites Inc.Dassault Systèmes, Dimensional Innovations and Techmer PM.

The DOE-funded Purdue program, “Additive Manufacturing of Modular Tools with Integrated Heating for Large-Scale Wind Blade Manufacturing,” is led by Eduardo Barocio, director of the Composites Additive Manufacturing and Simulation (CAMS) Industrial Consortium.

Eduardo Barocio, director of the Composites Additive Manufacturing and Simulation (CAMS) Industrial Consortium

Eduardo Barocio, director of the Composites Additive Manufacturing and Simulation (CAMS) Industrial Consortium

“The primary goal of the program is to develop the foundation for automation in manufacturing of tooling for large-scale wind blades that can accommodate continuous changes in blade geometry and scale,” Barocio said. “This will be accomplished through modular construction, wherein modules are 3D printed with carbon fiber/thermoplastic composites by a technology called extrusion deposition additive manufacturing, which was first developed at the DOE’s Manufacturing Demonstration Facility in the Oak Ridge National Laboratory.”

Specific targets for the program include developing a module design for wind blades equal to or greater in length than 80 meters; reducing the time required to manufacture and assemble wind blade tooling by at least 40% over conventional tool manufacture; enhancing tool performance by at least 15%; effecting weight reductions of by a minimum of 25% over conventional tools; and lowering the manufacturing cost of a wind blade tool by at least 35%.

Barocio is founder and director of the Thermwood LSAM (Large-Scale Additive Manufacturing) Research Lab at the Indiana Manufacturing Institute in Purdue Research Park. He is also founding director of the Composites Additive Manufacturing and Simulation Industrial Consortium, whose mission is to shape the future of large-scale additive manufacturing by providing education, simulation tools, characterization and best practices.

“The proposed program provides the foundation for automated manufacturing technology in wind blade tooling manufacture,” Barocio said. “These same technologies can be applied to manufacturing of all the elements of the wind energy system and, as such, the program provides a pioneering development that can leverage technology within the United States for a major source of clean energy, wind.”

The program will develop and demonstrate seven specific innovations. These include automating the 3D printing of large-scale modules and developing robust joining technology and inline heating elements deposition for conduction heating. Others include 3D printed cooling channels for convective cooling; new composite materials systems for economy and performance; support frame weight reduction; and tool deformation prediction and control, with decision making by a digital twin for 3D printing design and manufacturing.

Overall, the DOE awarded $30 million for 13 projects across 10 states that will reshape the design, materials and sustainability of large wind blades for offshore and land-based applications.  Large wind blades face significant challenges in design and materials, particularly for offshore applications. The selected projects will tackle these challenges, focusing on sustainability, efficiency and technological advancements to make wind energy more viable and effective.

Advanced lightweight composite materials have emerged as pivotal in enhancing wind power generation and vehicular applications. The DOE projects were picked for their potential to bolster the manufacturability and robustness of these composite materials, which are essential to the future success of wind energy technologies. The projects focus on three primary challenges: large wind blade additive manufacturing, additive manufacturing of wind turbine components and advanced manufacturing, materials and sustainability for large wind blades.

“These projects, alongside the Purdue program, will address the remaining challenges in wind turbine manufacturing and build on previous work in automation, digitalization, wind blade sustainability and modular blade construction and joining,” said R. Byron Pipes, executive director of the Composites Manufacturing Simulation Center at Purdue. “Successful demonstration of automation in the manufacture of alternate energy systems can enhance their wider use while sustaining the industry in the United States.”

THERMWOOD LSAM Additive Printer 510 will be LIVE Printing High Temp Autoclave Aerospace Tooling at CAMX 2021!

Posted by Duane Marrett on Fri, Oct 01, 2021

Tags: Thermwood, Announcements, Trade Shows, Large Scale, Thermwood LSAM, SABIC, LSAM Additive Printers, Airtech, High Temperature, Techmer PM, CAMX

Thermwood LSAM

Live Printing

THERMWOOD LSAM Additive Printer 510 will be LIVE Printing High Temp Autoclave Aerospace Tooling at CAMX 2021!

Thermwood will be printing high temp autoclave aerospace tooling on an LSAM Additive Printer 510 LIVE at CAMX 2021 in Dallas, TX, October 19th-21st in Booth #M44B.  LSAM Research Laboratory at Purdue ADDITIVE3D simulation software will be on display as well in adjacent Booth #M44, with Purdue representatives on site for demonstrations.  We will be printing a different material each day, donated by AIRTECH, SABIC AND TECHMER PM.  This promises to be an exciting demonstration of the LSAM Additive Printer Large Scale Additive System! 

THERMWOOD LSAM Additive Printer 510 will be LIVE Printing High Temp Autoclave Aerospace Tooling at Rapid + TCT 2021

Free CAMX 2021 Exhibit Pass & 15% off Conference Registration Fee

Click the link below to Be Our Guest and register for a Free CAMX Exhibit pass and 15% off the Conference Registration Fee.

Free Exhibit Hall Pass Code: FREEEX021

15% off Full Conference Registration Code: FREEFULL21

CAMX 2021 Thermwood Free Exhibit Hall Pass Link

Make plans now to visit the Kay Bailey Hutchinson Convention Center and stop by Thermwood Booth #M44B to witness this live and in-person!


Thermwood LSAM Research Laboratory at Purdue University

LSAM Research Laboratory at Purdue ADDITIVE3D Software on Display

Representatives from the recently announced Thermwood Research Laboratory at Purdue University (located in Purdue University's Composites Manufacturing Simulation Center - CSMC) will also be on hand to demonstrate their ADDITVE3D simulation software.

Additive3D Software from LSAM Research Laboratory at Purdue University


airtech_logo-1

AIRTECH High Temp Material - Tuesday, October 19th

On Tuesday, October 19th, we will be printing AIRTECH PEI DALTRAM I-350CF


SABIC

SABIC High Temp Material - Wednesday, October 20th

On Wednesday, October 20th we will be printing SABIC LNP™ THERMOCOMP™ AM EC004XXAR1 ULTEM compound.


Techmer PM

TECHMER PM High Temp Material - Thursday, October 21st

On Thursday, October 21st, we will be printing TECHMERPM PESU 1810 3DP.


 

THERMWOOD LSAM Additive Printer 510 will be LIVE Printing High Temp Autoclave Aerospace Tooling at Rapid + TCT 2021

Posted by Duane Marrett on Thu, Sep 02, 2021

Tags: Thermwood, Announcements, Trade Shows, Large Scale, Thermwood LSAM, SABIC, LSAM Additive Printers, RAPID + TCT, Airtech, High Temperature, Techmer PM

Thermwood LSAM

THERMWOOD LSAM Additive Printer 510 will be LIVE Printing High Temp Autoclave Aerospace Tooling at Rapid + TCT 2021

Live Printing

Thermwood will be printing high temp autoclave aerospace tooling on an LSAM Additive Printer 510 LIVE at RAPID + TCT 2021 in Chicago, IL September 13th-15th.  LSAM Research Laboratory at Purdue ADDITIVE3D Software will be on display as well, with Purdue representatives on site for demonstrations.  We will be printing a different material each day, donated by SABIC, TECHMER PM and AIRTECH.  This promises to be an exciting demonstration of the LSAM Additive Printer Large Scale Additive System. 

Free Rapid + TCT Expo Pass & $100 off Conference Registration Fee

Click the link below to Be Our Guest and register for a Free Rapid + TCT Expo pass and $100 off the Conference Registration Fee.

Use Promo Code: 10016220

Free Rapid + TCT Expo Pass & $100 off Conference Registration Fee

Make plans now to visit the McCormick Center and stop by Thermwood booth #E7628 to witness this live and in-person!


Thermwood LSAM Research Laboratory at Purdue University

LSAM Research Laboratory at Purdue ADDITIVE3D Software on Display

Representatives from the recently announced Thermwood Research Laboratory at Purdue University (located in Purdue University's Composites Manufacturing Simulation Center - CSMC) will also be on hand to demonstrate their ADDITVE3D simulation software.

Additive3D Software from LSAM Research Laboratory at Purdue University


SABIC

SABIC High Temp Material - September 13th

On Monday, September 13th we will be printing SABIC LNP™ THERMOCOMP™ AM EC004XXAR1 ULTEM compound.


Techmer PM

TECHMER PM High Temp Material - Tuesday, September 14th

On Tuesday, September 14th, we will be printing TECHMERPM PESU 1810 3DP.


airtech_logo-1

AIRTECH High Temp Material - Wednesday, September 15th

On Wednesday, September 15th, we will be printing AIRTECH PEI DALTRAM I-350CF