Air Force Research Laboratory, Boeing and Thermwood Partner on Low Cost Responsive Tooling Program

Posted by Duane Marrett on Thu, Aug 08, 2019

Tags: Thermwood, Announcements, Additive, LSAM, Thermwood LSAM, Additive Manufacturing, Boeing, Air Force, Air Force Research Laboratory

The United States Air Force Research Laboratory (AFRL) Manufacturing and Industrial Technology Division (ManTech) is interested in large scale polymer-based additively manufactured (AM) composite cure tooling. Boeing submitted an idea to ManTech’s Open BAA to evaluate the current state of additive manufacturing technology with respect to the fabrication of low cost autoclave capable tools for the production of composite aerospace components. The initial demo tool is for an AFRL concept aircraft fuselage skin (Figure 1). Boeing contracted Thermwood to demonstrate capability of their Large Scale Additive Manufacturing (LSAM) machine.  

Air Force Research Laboratory Conceptual Aircraft & Full-Scale Tool

Figure 1: Air Force Research Laboratory Conceptual Aircraft & Full-Scale Tool


Please click below for video


The Thermwood LSAM machine offers an innovative additive manufacturing machine capability with its Vertical Layer Printing (VLP). The vertical layer printing AM process provides a significant cost benefit by increasing the size components can be printed, thus reducing assembly cost for large tools. To validate the VLP process using high temperature autoclave-capable materials, Boeing and AFRL chose to 3D print a section of the large tool to evaluate the LSAM functionality. The Mid-Scale tool was printed on Thermwood’s LSAM  Additive Manufacturing Demonstration machine in Southern Indiana using a 40mm print core running 25% carbon fiber reinforced Polyethersulfone (PESU).

Mid-Scale Tool 3D Printing on Large Scale Additive Manufacturing (LSAM)
Figure 2: Mid-Scale Tool 3D Printing on Large Scale Additive Manufacturing (LSAM)

The initial test tool has the same width, height and bead path as the final mold, incorporates all major features of the final mold, but compressed in length being only 4 feet long. The final tool will be over 10 feet long. The Mid-Scale tool set a milestone achievement as the first high temperature tool printed using the VLP system. The Mid-Scale tool required 5 hours, 15 minutes to print with a print weight of 367 lbs. After final machining, the tool was probed for surface profile and tested for vacuum integrity. The tool passed room temperature vacuum test and achieved dimensional surface profile tolerances. The Full-Scale tool will weigh approximately 1400 pounds and require 18 hours to print.

Machining (left) and Probe (right) operation on a Thermwood LSAMFigure 3: Machining (left) and Probe (right) operation on a Thermwood LSAM

The program is progressing to the next step, producing a full size tool. Boeing and the Air Force are carefully documenting all operational parameters of the project to transition the technology to production programs. Additive manufactured autoclave tooling offers significant advantages over traditional methods of producing these tools. 3D printed tooling is less expensive and can be fabricated in days or weeks rather than months.

AFRL is very interested in tooling approaches for the Low-Cost Attributable Technology (LCAAT) program which has a goal to break the cost growth curve and field new systems faster.  AFRL Program Manager Andrea Helbach says, “We are interested in additively manufactured tooling’s ability to reduce the cost and time to procure autoclave capable tooling.  Additionally, AM tooling supports changes in vehicle design with minimal non-recurring expenses.” 

“Future fielded low cost, but capable UAV’s will need a responsive materials and manufacturing processes strategy” says Craig Neslen, LCAAT Initiative Manufacturing Lead.  “Additive manufactured composite tooling is one of many technologies being evaluated to ensure the industrial base can handle future manufacturing surge requirements as well as accommodate periodic system tech refresh activities which could necessitate minor vehicle design changes at an acceptable cost.”  


More Information on LSAM

LSAM is based on exciting new technology developed from an entirely new direction.

LSAM is intended for industrial production. It is not a lab, evaluation or demonstration machine, but is instead a full-fledged industrial additive manufacturing system intended for the production of large scale components.

Thermwood has already applied for 19 separate patents on various aspects of this new technology (several have already been granted and more will be coming as development continues). LSAM is truly “state of the art” in this exciting new world of Large Scale Additive Manufacturing. 

The Secret to LSAM Print Quality...A Different Process

Examples of large parts easily printed on Thermwood's LSAM

Click for More Info on the Thermwood LSAM

Ascent Aerospace Invests in Additive Manufacturing

Posted by Duane Marrett on Wed, Jul 17, 2019

Tags: Thermwood, Announcements, Why Purchase a Thermwood, Additive, LSAM, Thermwood LSAM, Additive Manufacturing, Ascent Aerospace

Ascent Aerospace Invests in Thermwood LSAM Additive Manufacturing

Santa Ana, CA - July 2019 – Ascent Aerospace, a leading provider of aerospace tooling systems, factory automation and integration solutions, is excited to announce its recent investment of a Large Scale Additive Manufacturing (LSAM) machine from Thermwood Corporation, a technology leader and manufacturer of CNC and 3D printing equipment based in Dale, IN.

With a 10’ x 40’ fabrication area, Ascent’s LSAM machine will be the largest available in the aerospace market, allowing for both the printing and machining of a wide range of thermoplastic composite materials.

With a 10’ x 40’ fabrication area, Ascent’s LSAM machine will be the largest available in the aerospace market, allowing for both the printing and machining of a wide range of thermoplastic composite materials.

The use of 3D printing in the aerospace tooling sector has continued to mature over the last several years and is accelerating in usage; with this, Ascent Aerospace plans to answer the industry's call and take additive technology to a new level by leveraging its deep expertise in tooling to commercialize production ready additive solutions. As a new tooling option for its customers, Ascent intends to utilize the LSAM machine to bring tools such as layup molds, masters, trimming/drilling fixtures and vacuum holding fixtures to market faster than ever before. The LSAM machine will be co-located with Ascent's composite tooling shop, autoclave and clean room in Santa Ana, California, and will allow Ascent to build targeted tools lighter and more efficiently, providing time and cost savings to its global customers.

The LSAM machine will have an industry leading build area, providing aerospace customers the opportunity to benefit from large-scale printed composite tooling. By combining this technology with Ascent's in-house tooling expertise and heritage engineering, it will be possible to fabricate and deliver fully functional select fixtures and molds with significantly reduced lead-times of a traditional metallic tool. The wide variety of materials that are compatible with the LSAM, such as ABS, Polycarbonate, Nylon, and PESU resins with reinforcing compounds, will further expand the selection of tooling solutions that Ascent will bring to the market. 

Michael Mahfet, the CEO of Ascent Aerospace, stated, "Our investment in the LSAM represents the next milestone in Ascent's multi-year technology roadmap and realization of expansive efforts studying the benefits of additive manufacturing within the aerospace tooling market. This capability positions us to remain the leader in new and innovative tooling solutions, supporting strong collaboration with our customers and supplementing our in-house, vertically integrated design and fabrication capabilities."

Ascent Aerospace is committed to challenging the industry norms, improving manufacturing processes and providing customers with the best solutions to meet their demands.

About Ascent Aerospace

Ascent Aerospace is a world renowned, single-source provider of production and automated assembly systems for the aerospace and defense industry. As the largest tooling group in the industry, Ascent produces a full suite of both mold and assembly tooling required for the aerospace manufacturing market, including the largest Invar molds ever made for aerospace.  As an automation provider and production system integrator, Ascent works with customers to develop their project and see it through from process engineering, to build and installation to ensure it is an efficient and cost effective solution. Visit www.ascentaerospace.com for more information.

More Information on LSAM

LSAM is based on exciting new technology developed from an entirely new direction.

LSAM is intended for industrial production. It is not a lab, evaluation or demonstration machine, but is instead a full-fledged industrial additive manufacturing system intended for the production of large scale components.

Much of the technology used in Thermwood’s LSAM machines and print process is completely new. Thermwood has already received numerous patents on these revolutionary developments and many more are in the works. In addition to the projects already announced, many other exciting results that LSAM has already achieved are covered by non-disclosure agreements and must be kept secret. LSAM is truly state-of-the-art in the exciting new world of large scale additive manufacturing.

The Secret to LSAM Print Quality...A Different Process

Examples of large parts easily printed on Thermwood's LSAM

Click for More Info on the Thermwood LSAM

Thermwood and Bell 3D Print Helicopter Blade Mold

Posted by Duane Marrett on Thu, Feb 07, 2019

Tags: Thermwood, Announcements, 3D printing, Additive, LSAM, 3D Print, Thermwood LSAM, Additive Manufacturing, Bell, Bell Helicopter, Bell Flight, Helicopter

A joint venture program between Thermwood and Bell has pushed the limits of 3D printing, resulting in what Thermwood believes is the largest 3D printed autoclave capable tool ever made. 

The first half of an 18 foot helicopter blade mold that was 3D Printed on a Thermwood LSAM in just over 3 hours.

The first half of an 18 foot helicopter blade mold that was 3D Printed in just over 3 hours


A common limiting factor within aerospace development programs is expensive, long-lead time tooling.  Bell, not being satisfied abiding by the industry norms, decided to reach out to Thermwood to help solve this challenge.

Glenn Isbell quote regarding Thermwood's LSAM

Video

The Challenge

Shortly after initial conversations with Bell, the Thermwood team offered an opportunity of a partnership centering around the capabilities of their new 60mm melt core technology.  The original challenge for quickly and affordably manufacturing large bond tooling seemed closer to reality than ever before. 

Bell responded to this opportunity in kind by providing Thermwood a model of a closed cavity blade mold measuring approximately 20 feet long, 14 inches wide and 17 inches high. 

The basic tooling requirements were as follows:

  • Must to be printed in one continuous run for vacuum integrity
  • Surface finish must be 32 RMS or better
  • Tooling must be able to withstand 90 psi at 360°F. 
  • Tight tolerances and features were also required to ensure proper mating of the two blade mold halves.

The Process

Upon receiving the model and requirements, the Thermwood team sprang into action. Utilizing their new 60mm melt core technology, they began to print the tool using TechmerPM’s 25% Carbon Fiber reinforced PESU (Polyethersulfone) in one continuous run. Working closely with Thermwood, Techmer has formulated this material specifically for LSAM additive printing.

The printable material has a Glass Transition Temperature of over 400°F and can easily survive common aerospace component cure cycles of up to 360°F, at 90psi. The combination of Techmer's new materials and Thermwood's printing technology, resulted in a print time of one tool half in just 3 hours 8 minutes and an “as printed” weight of 542 pounds.

Thermwood technicians claim the Techmer PESU material prints as easily as ABS, although at a much higher temperature, allowing quality autoclave-capable molds to be made from the high temperature polymer.

Thermwood LSAM 3D Printing an 18 ft helicopter blade mold

This extraordinary achievement was made possible by a new, larger melt core recently installed on Thermwood’s LSAM system at its Development/Demonstration Lab in Southern Indiana. The standard LSAM machine print head housing can be equipped with different capacity melt cores, each offering different minimum and maximum throughputs.

Continuous Cooling Print Process

With Thermwood’s room temperature “Continuous Cooling” print process, the cycle time for each layer is determined solely by how long it takes a particular printed polymer to cool to the proper temperature to accept the next layer.

Only by printing at the proper temperature can you achieve a totally fused, void-free printed structure that will maintain vacuum in an autoclave without a coating. The print head output determines how much material can be printed during the time it takes for the layer to cool. Bigger print heads mean larger parts, not necessarily faster layer to layer print time.

LSAM Print 3D software infared camera view.

Thermographic view of the part being printed

The new 60mm melt core has a measured maximum output of 480 to 570 pounds per hour depending on the polymer being printed and can print over 100 feet of typical print bead (.830” x .200”) per minute. This high print rate, even when processing high temperature material, allows the print bead to be oriented along the length of the tool. This is desirable for Bell, who manufactures large composite parts, because thermal expansion is significantly lower in that direction, minimizing expansion and contraction of the tool with temperature changes.

Internal Printed Support Structure

Another interesting feature of this tool is that the internal printed structure supports the mold without actually contacting or touching the back side of the mold cavity. This means air can flow freely under the entire formed part in the autoclave, making the part curing process easier and more consistent. The ability to incorporate a complex internal design, such as this, is another major advantage of using additive manufacturing for this type of tooling.

Internal 3D Printed support structure in a 18 foot hellicopter blade mold on a Thermwood LSAM

3D printed internal support structures

Thermwood’s LSAM Print 3D slicing software specifically supports programming of involved internal structures such as these.

Internal support structure shown on LSAM Print 3D software.

Internal support structure shown on LSAM Print 3D software.

Internal support structure shown on LSAM Print 3D software.

Internal support structures in  LSAM Print 3D slicing software


Bell Investigates Multiple Manufacturing Processes

Bell is continuing to investigate integrated technologies that support multiple manufacturing processes and tools.  The LSAM is capable of supporting printing processes as well as trim and drill processes to meet aerospace specifications.  Once printed, the team began to machine the bond tool half by utilizing the other aspect of the LSAM system.  The total machining time of the lower blade mold half was 40 hours.  

James Cordell quote regarding Thermwood's LSAM

The completed bond tool was able to maintain Bell’s vacuum standards required for autoclave processing right from the machine, without the need for a seal coating

Part maintaining vacuum during extended testing

Part maintaining vacuum during extended testing

The part steadily holding vacuum during testing

The part steadily holding vacuum during testing


Next Steps

The Thermwood team will print the second half of the blade mold, with the intention of having Bell cure a full molded blade within the final additively-manufactured bond tool, another first.  Further testing will be completed by both Thermwood and Bell teams on PESU printed molds, to continue innovating in this space. 

Final Thoughts

Ken Susnjara Quote on Bell

Thermwood believes recent LSAM technology advances such as Vertical Layer Printing and Changeable Melt Cores (coupled with polymers specially tailored for LSAM processing), are opening exciting new possibilities for additive production of even larger and more technically complex components.

More Information on LSAM

LSAM is based on exciting new technology developed from an entirely new direction.

LSAM is intended for industrial production. It is not a lab, evaluation or demonstration machine, but is instead a full-fledged industrial additive manufacturing system intended for the production of large scale components.

Much of the technology used in Thermwood's LSAM machines and print process is completely new. Thermwood has already received numerous patents on these revolutionary developments and many more are in the works.

LSAM is the Leader in Large Scale Additive Sales

In the last year, Thermwood's LSAM additive manufacturing systems were the clear market leaders in the sale of large scale 3D printing systems for thermoplastic composite materials, selling virtually all systems in the US during the year.

LSAM is truly state-of-the-art in the exciting new world of large scale additive manufacturing.

The Secret to LSAM Print Quality...A Different Process

Examples of large parts easily printed on Thermwood's LSAM

Click for More Info on the Thermwood LSAM

TAHOE Boats Newest Design Uses 3D LSAM Printed Tooling

Posted by Duane Marrett on Thu, Jan 10, 2019

Tags: Thermwood, Announcements, 3D printing, Additive, LSAM, 3D Print, Thermwood LSAM, Additive Manufacturing, T16, White River, Bass Pro, TAHOE Boats

TAHOE Boats, Springfield, MO. formally announced the all-new, revolutionary T16 boat design, engineered with families in mind. Using innovative technology, the T16 delivers an unprecedented lightweight design and affordability with an uncompromising commitment to quality and performance.

One factor that made this boat possible is that the T16 was designed and built in the U.S. leveraging innovative Thermwood LSAM techniques never before used in the marine industry.

White River Marine Group, the marine manufacturing arm of Bass Pro Shops, worked with Thermwood, utilizing Thermwood’s Large Scale Additive Manufacturing (LSAM) system and the latest in LSAM technology to custom-print the tool used to manufacture the boat’s hull – the first time 3D printing has been used on actual boat production at this scale.

This boat-building advancement led to greater efficiency in the planning, design and construction of the T16.

Tahoe Boats T16, which was designed and built in the US.

The Process

Thermwood printed the master pattern for the boat hull at its Development/Demonstration Labs is Dale, Indiana. The pattern was printed in six sections from 20% carbon fiber filled ABS supplied by Techmer PM, who was an active partner in the program. The joints between the pieces were machined, pinned and bonded together and the assembled hull machined to final size and shape. The entire process required only ten days to complete.

T16 Master Pattern being machined on Thermwood LSAM

After printing and machining, the tool was sent to White River, where they applied, sanded and polished a proprietary coating, which they developed earlier, using previously printed parts supplied by Thermwood.

TAHOE Boats T16 Master Pattern 3D Printed on a Thermwood LSAM

Prior to this public introduction, Thermwood was able to use images and videos of the process, which have been on our web site for some time now, however, we respected a request not to disclose the participants or final use of the tool until the boat was publicly released by White River Marine Group.


Tahoe Boats T16, which was designed and built in the US.


Please Click to View Video of the Entire Process

Current Technology Speeds The Process Up Even More

An interesting note is that this type of tool can be produced in even less time with current technology. Using Thermwood’s Vertical Layer Printing (which wasn’t available at the time this tool was made), this type of pattern can now be printed as one piece in just over two days, eliminating the machining between sections and the bonding process. This should cut build time almost in half.

Ken Susnjara on additive manufacturing in the marine industry.

Master patterns, such as this, are used to make molds for high production rates where multiple molds are required. For larger boats or lower production rates, it may be possible to print the mold itself rather than a pattern from which multiple molds are made. Thermwood has also been working on this approach and has recently announced the successful production of a seven foot long, 1/7 scale model of a yacht hull mold using Vertical Layer Printing. Work continues in both these areas.

Even at this early stage of development it is apparent that large scale additive manufacturing could have a dramatic, perhaps even a transformational impact on production methods used in the marine industry, significantly reducing tooling cost and dramatically speeding up the tool building process.

About TAHOE Boats

TAHOE is part of the White River Marine Group family of brands, Bass Pro’s marine manufacturing arm and the largest builder of boats in the world by volume. In addition to TAHOE, White River Marine manufactures America’s favorite boat brands including MAKO, NITRO, RANGER, REGENCY SUN TRACKER, TRACKER, TRITON and others. All White River Marine boats are proudly manufactured in the U.S.

About Techmer PM

Techmer PM is a leading materials design company and works in deep partnership with plastics processors, OEMs, and designers to solve some of their most difficult business, manufacturing, and sustainability challenges. For more than 30 years, they have helped consumer and industrial product manufacturers achieve the finest color, texture, appearance, and functional enhancements for a variety of product applications. Techmer PM is a family-owned company that’s based in Clinton, Tennessee where they operate their largest production facility, as well as five others throughout the U.S. They have been a pioneer in developing polymers for large scale additive manufacturing applications.

More Information on LSAM

LSAM is based on exciting new technology developed from an entirely new direction.

LSAM is intended for industrial production. It is not a lab, evaluation or demonstration machine, but is instead a full-fledged industrial additive manufacturing system intended for the production of large scale components.

Much of the technology used in Thermwood’s LSAM machines and print process is completely new. Thermwood has already received numerous patents on these revolutionary developments and many more are in the works. In addition to the projects already announced, many other exciting results that LSAM has already achieved are covered by non-disclosure agreements and must be kept secret. LSAM is truly state-of-the-art in the exciting new world of large scale additive manufacturing.

The Secret to LSAM Print Quality...A Different Process

Examples of large parts easily printed on Thermwood's LSAM

Click for More Info on the Thermwood LSAM

Thermwood Announces New, Higher Capacity Melt Core for its LSAM Print Head

Posted by Duane Marrett on Tue, Dec 18, 2018

Tags: Thermwood, Announcements, 3D printing, Additive, LSAM, 3D Print, Thermwood LSAM, Additive Manufacturing, Melt Core

Thermwood has completed initial testing of a larger melt core for its LSAM (Large Scale Additive Manufacturing) systems and the results are stunning.

Ken Susnjara Quote - LSAM 60mm Melt Core

 

Print up to 570 pounds per hour

Thermwood’s additive print head housing can accommodate interchangeable melt cores.  A melt core consists of a feed housing, extruder and polymer melt pump and determines just how fast material can be printed.

The standard 40mm melt core has a maximum output of between 190 and 210 pounds per hour, depending on the polymer being printed, which translates to 40 - 50 feet of standard bead (0.83”x0.20”) per minute.

The new 60mm melt core has been tested with different polymers and has achieved print rates from 480 to 570 pounds per hour, which translates to well over 100 feet of bead per minute.

More Info

With Thermwood’s room temperature “Continuous Cooling” print process, the cycle time for each layer is determined solely by how long it takes a particular printed polymer to cool to the proper temperature to accept the next layer.

Only by printing when the previously printed layer is within the proper temperature range can you achieve a completely solid, void free printed structure that maintains vacuum in an autoclave without a secondary coating. This is as fast as you can print a layer.

The print head output then determines how much material can be printed during the time it takes for the layer to cool. Bigger print heads mean bigger parts not faster layer to layer print time.

“This new development opens a new world of additive manufacturing possibilities” says Thermwood’s Founder, Chairman and CEO, Ken Susnjara. “This is one of the most exciting advances we have achieved to date and now we can do things we couldn’t even consider before”.

New Possibilities

For example, Thermwood recently announced Vertical Layer Printing which allows parts to be printed that are as long as the machine table. In this process, however, the layer stack direction is along the length of the part. This works well for room temperature or low temperature patterns, fixtures and molds, however, for high temperature molds, for use in an autoclave for example, the thermal expansion (CTE) along the stack direction is as much as 20 times greater than along the bead direction. Therefore, it is desirable to print long tools with the bead oriented in the long direction, however, print heads, even Thermwood’s 200 pound per hour head, currently the largest in the industry, have been too slow for this…until now.

The high print rate of the new melt core, even when processing high temperature materials, allows the print bead to be oriented along the length of the tool, even for tools that are as long as the machine table itself.

Melt Core Changeover in One Shift

In addition to a maximum speed, each melt core has a minimum speed at which it can continuously print. Parts with bead lengths smaller than this minimum, require the print head to move to a “Hot Hold” area where it runs at a slow maintenance speed, spilling material at a slow rate until the required cooling time has been achieved. This wastes material and means the larger melt core may not be desirable for all applications. Many tools and molds are just too small for efficient printing with the larger core.

If a user needs both small and large parts on the same machine, the melt cores can be switched in less than a shift.

Thermwood LSAM 40mm Melt Core Changeover to 60mm Melt Core

Final Thoughts

Thermwood believes the next step in this development is to address the challenge of really long autoclave capable tooling. Be assured, work in this area has already begun.

More Information on LSAM

LSAM is based on exciting new technology developed from an entirely new direction.

LSAM is intended for industrial production. It is not a lab, evaluation or demonstration machine, but is instead a full-fledged industrial additive manufacturing system intended for the production of large scale components.

Much of the technology used in Thermwood’s LSAM machines and print process is completely new. Thermwood has already received numerous patents on these revolutionary developments and many more are in the works. In addition to the projects already announced, many other exciting results that LSAM has already achieved are covered by non-disclosure agreements and must be kept secret. LSAM is truly state-of-the-art in the exciting new world of large scale additive manufacturing.

The Secret to LSAM Print Quality...A Different Process

Examples of large parts easily printed on Thermwood's LSAM

Click for More Info on the Thermwood LSAM

Thermwood Validates Additive Production of Yacht Hull Molds

Posted by Duane Marrett on Tue, Dec 04, 2018

Tags: Thermwood, Announcements, 3D printing, Additive, LSAM, 3D Print, Thermwood LSAM, Additive Manufacturing, Mold, Yacht

Thermwood has already 3D printed a full size pattern which was used to produce production sport boat hull molds. Much larger vessels, yachts for example, require a different approach. In these instances, it is desirable to print the mold itself rather than print a plug or pattern from which a mold is made.

Working with an undisclosed marine industry collaborator, Thermwood has printed a scale model of such a hull mold to test and validate the process.

Video

Printing The Mold Itself - No Plug/Pattern Necessary

The 1/7th scale test mold for this project is approximately seven feet long (the full size hull is approximately 50 foot). It was printed from 20% carbon fiber filled ABS using Thermwood’s LSAM additive manufacturing machine.

Six separate pieces of different lengths, the longest two, each being over seven feet long, were printed concurrently using LSAM’s Vertical Layer Print capability. Printing required about 30 1/2 hours.

The ability to simultaneously print multiple parts of variable heights highlights the flexibility of both the vertical print process as well as Thermwood’s LSAM Print3D slicing software. The parts were then trimmed on the same machine and assembled into two mold halves.

More Details

The tool includes a deep undercut at the transom, so the finished mold needs to be two pieces, split down the middle. These mold halves are clamped together for layup and then separated to remove the finished hull after curing.

Molds for hulls of longer than fifty feet will be printed in multiple sections, assembled for hull layup and then disassembled to remove the finished part. The test tool printed here simulates that assembly and disassembly process.

Thermwood LSAM Yacht mold split down the middle
 
Thermwood LSAM Yacht mold split down the middle

The tool printed in this program will be tested using production materials in a production environment. Thermwood continues to work on methods and techniques needed to refine this into a production ready process.

Thermwood believes that the marine industry will benefit significantly from emerging large scale additive manufacturing technology and that this project is a significant first step toward the direct production of large vessel tooling.

Thermwood LSAM Yacht mold joined together

Closeup of Thermwood LSAM Yacht mold joined together

Closeup of Thermwood LSAM Yacht mold joined together


More Information on LSAM

LSAM is based on exciting new technology developed from an entirely new direction.

LSAM is intended for industrial production. It is not a lab, evaluation or demonstration machine, but is instead a full-fledged industrial additive manufacturing system intended for the production of large scale components.

Much of the technology used in Thermwood’s LSAM machines and print process is completely new. Thermwood has already received numerous patents on these revolutionary developments and many more are in the works. In addition to the projects already announced, many other exciting results that LSAM has already achieved are covered by non-disclosure agreements and must be kept secret. LSAM is truly state-of-the-art in the exciting new world of large scale additive manufacturing.

The Secret to LSAM Print Quality...A Different Process

Examples of large parts easily printed on Thermwood's LSAM

Click for More Info on the Thermwood LSAM

Sabic Displays Thermwood LSAM Printed Tool at Formnext Show

Posted by Duane Marrett on Tue, Nov 20, 2018

Tags: Thermwood, Announcements, Trade Shows, 3D printing, Additive, LSAM, 3D Print, Thermwood LSAM, Additive Manufacturing, SABIC, Formnext

Sabic, a Saudi diversified manufacturing company, active in petrochemicals, chemicals, industrial polymers, fertilizers, and metals recently showed an additive manufactured aerospace tool in its booth at the recent Formnext additive manufacturing trade show in Frankfort Germany.

The tool, which was 3D Printed and trimmed on Thermwood’s LSAM® demonstration system at its Southern Indiana headquarters, is made from Sabic’s ULTEM™ high temperature thermoplastic composite material. 

Tool made on Thermwood LSAM displayed in SABIC booth at Formnext 2018 

Tool made on Thermwood LSAM displayed in SABIC booth at Formnext 2018

SABIC’s portfolio of THERMOCOMP™ AM reinforced compounds, which includes materials based on ULTEM™ resin, is helping to encourage the use of large scale additive manufacturing for specialized applications, such as high-temperature autoclave tooling for the aerospace industry, reusable tooling for the cast concrete industry and a wide range of lower-temperature large part thermoforming tooling. Printed tools can help to reduce cost, construction time, inventory and weight vs. traditional steel tools.


The Details

At the Formnext show, SABIC featured a thermoforming tool for an aircraft interior panel printed on a Thermwood LSAM® machine using THERMOCOMP™ AM EC004XXAR1 compound, a SABIC material based on ULTEM™ resin with 20 percent carbon fiber reinforcement.

Two tools, a male and female of the same shape and dimensions, were printed at Thermwood’s demonstration center in Southern Indiana at the same time in 6 hours and 7 minutes using 449 pounds of material. Trimming required an additional 6.5 hours per part or 13 hours total.

Tool made on Thermwood LSAM displayed in SABIC booth at Formnext 2018


About Sabic

SABIC is a global leader in diversified chemicals headquartered in Riyadh, Saudi Arabia. It manufactures on a global scale in the Americas, Europe, Middle East and Asia Pacific, making distinctly different kinds of products:  chemicals, commodity and high performance plastics, agri-nutrients and metals. The company has more than 35,000 employees worldwide and operates in more than 50 countries, with innovation hubs in five key geographies – USA, Europe, Middle East, South East Asia and North East Asia.


About Thermwood

outside_building_2Thermwood is a US based, multinational, diversified CNC machinery manufacturer that markets its products and services through offices in 11 countries. Thermwood is the oldest manufacturer of highly flexible, 3 & 5 axis high-speed machining centers known as CNC routers.  Thermwood has also become a technology leader in large scale additive manufacturing of thermoplastic composite molds, tooling, patterns and parts with its line of LSAM (Large Scale Additive Manufacturing) machines that both 3D print and trim on the same machine.


 More Information on LSAM

LSAM is based on exciting new technology developed from an entirely new direction.

LSAM is intended for industrial production. It is not a lab, evaluation or demonstration machine, but is instead a full-fledged industrial additive manufacturing system intended for the production of large scale components.

Much of the technology used in Thermwood’s LSAM machines and print process is completely new. Thermwood has already received numerous patents on these revolutionary developments and many more are in the works. In addition to the projects already announced, many other exciting results that LSAM has already achieved are covered by non-disclosure agreements and must be kept secret. LSAM is truly state-of-the-art in the exciting new world of large scale additive manufacturing.

The Secret to LSAM Print Quality...A Different Process

Examples of large parts easily printed on Thermwood's LSAM

Click for More Info on the Thermwood LSAM

Thermwood Collaborating with the Navy to Explore Additive Manufacturing Technology

Posted by Duane Marrett on Wed, Nov 14, 2018

Tags: Thermwood, Announcements, 3D printing, Additive, LSAM, 3D Print, Thermwood LSAM, Navy, Additive Manufacturing, Submarine, Naval Surface Warfare


Thermwood LSAM


Thermwood Corporation has entered into a collaborative program with the Naval Surface Warfare Center, Carderock Division to explore the use of additive manufacturing technology in developing marine models for ship and ship systems testing.

Part after printing and trimming

Please click below for video 

The Details

Carderock Division is the U.S. Navy's state-of-the-art research, engineering, modeling and test center for ships and ship systems. It is the largest, most comprehensive establishment of its kind in the world, serving a dual role in support of both our U.S. naval forces and the maritime industry. 

Navy and maritime communities have come to depend on their expertise and innovative spirit in developing advanced platforms and systems, enhancing naval performance, reducing operating costs and addressing the Navy's evolving mission.    

Part after printing and trimming

This initial validation program was centered on printing an unclassified scale nose of a submarine using Thermwood’s LSAM additive manufacturing system. The part was printed using 20% carbon fiber filled ABS in 11 hours and 45 minutes using traditional horizontal layer printing and a 40mm melt core. Final trim required 5 hours. Both printing and trimming were completed on the same machine, using Thermwood’s 10’ x 20’ LSAM at its demonstration lab in Southern Indiana.

Because of layer cooling requirements, the print rate for this part was less than half of the maximum rate the machine is capable of. It is expected that, moving forward, this program will include the printing of additional components using both horizontal and vertical layer printing.

Unclassified scale nose of a submarine

Close-up inside part

Close-up edge of part


More Information on LSAM

LSAM is based on exciting new technology developed from an entirely new direction.

LSAM is intended for industrial production. It is not a lab, evaluation or demonstration machine, but is instead a full-fledged industrial additive manufacturing system intended for the production of large scale components.

Much of the technology used in Thermwood's LSAM machines and print process is completely new. Thermwood has already received numerous patents on this revolutionary development and many more are in the works. Many exciting results that LSAM has already achieved are covered by non-disclosure agreements and must be kept secret.  LSAM is truly state-of-the-art in the exciting new world of large scale additive manufacturing.

The Secret to LSAM Print Quality...A Different Process

Examples of large parts easily printed on Thermwood's LSAM

Click for More Info on the Thermwood LSAM

Thermwood Announces Vertical Layer Printing

Posted by Duane Marrett on Thu, Oct 25, 2018

Tags: Thermwood, Announcements, aerospace, 3D printing, Additive, LSAM, 3D Print, Thermwood LSAM, Additive Manufacturing, Vertical Layer Printing, VLP

Thermwood has released a Vertical Layer Printing (VLP) option for its LSAM (Large Scale Additive Manufacturing) machines. This option allows parts to be printed which are as long as the machine table itself.

It does this by adding a second moving table, mounted perpendicular to the main fixed horizontal table. As layers are printed, this vertical table moves after each layer is printed, growing the part along the length of the machine rather than growing it upward. Thermwood’s “controlled cooling” print technology minimizes sag, which might otherwise pose a serious problem if the part were kept at an elevated temperature, as is common with traditional thermoplastic composite printing.

Vertical Layer Printing on a Thermwood LSAM


VLP Example Video

12 Foot Long ABS Trim Fixture for Boeing 777x Aircraft

As previously announced, one of the initial parts printed with this system is a 12 foot long, carbon fiber reinforced ABS trim fixture for use in the production of the Boeing 777X aircraft.

12 Foot ABS Trim Fixture for Boeing 777x printed on a Thermwood LSAM

VLP More Info

During development, Thermwood has vertically printed and validated the use of a variety of polymers, including high temperature materials such as PSU, PESU and PEI with good results. It appears that parts printed using VLP are structurally and functionally identical to parts printed in the traditional horizontal layer orientation.

This means that, just as with traditional horizontally printed LSAM parts, molds and tools printed using VLP maintain vacuum in an autoclave to aerospace standards right from the machine, without the need for any type of external coating.

Versatile Vertical Layer Printing

During VLP printing, the growing part rides on Teflon coated stainless steel belts. The belts and table drives (which can be fitted to any LSAM that is at least 20 feet long), have been designed to process parts which weigh up to fifty thousand pounds. Thermwood believes that this is more than adequate for anything customers are considering today.

Thermwood LSAM VLP Teflon coated stainless steel belt

During VLP printing, the growing part rides on Teflon coated stainless steel belts.

Print Long Parts in One Piece with VLP

The main advantage of Vertical Layer Printing is that long parts can be printed in one piece.

While it might be faster to print multiple sections of a large part simultaneously, they must then be bonded together so that they can be machined as a single piece. There are some disadvantages to this approach:

  • It requires time, labor and effort to machine mating surfaces, glue them together and wait for the adhesive to completely cure.
  • It may also require more than one bonding session for a larger part which typically requires more time and effort than simply printing the part in one piece.
  • Also, gluing printed parts together generally only works for certain room temperature or low temperature polymers.
  • Higher temperature materials are generally chemically and solvent resistant enough that they don’t bond well enough for autoclave use. This means if you want to 3D print a really large autoclave tool using a high temperature polymer, printing it in one piece is the only real option. Thermwood’s VLP now makes this both feasible and practical.

Quick Change from Horizontal to Vertical

VLP has been designed so that the machine can be reconfigured from standard horizontal layer printing to vertical layer printing or back again in a matter of a few hours. It is clear that technology exists, right now today, to 3D print large autoclave capable aerospace tooling on a production basis. Thermwood has already been granted patent protection on key aspects of its Vertical Layer Print technology. 


More Information on LSAM

LSAM is based on exciting new technology developed from an entirely new direction.

LSAM is intended for industrial production. It is not a lab, evaluation or demonstration machine, but is instead a full-fledged industrial additive manufacturing system intended for the production of large scale components.

Thermwood has already applied for 19 separate patents on various aspects of this new technology (several have already been granted and more will be coming as development continues). LSAM is truly “state of the art” in this exciting new world of Large Scale Additive Manufacturing. 

The Secret to LSAM Print Quality...A Different Process

Examples of large parts easily printed on Thermwood's LSAM

Click for More Info on the Thermwood LSAM

Boeing and Thermwood Partner to Demonstrate New 3D Printing Technology

Posted by Duane Marrett on Tue, Oct 09, 2018

Tags: Thermwood, Announcements, aerospace, 3D printing, Additive, LSAM, 3D Print, Thermwood LSAM, Additive Manufacturing, Vertical Layer Printing, Boeing, VLP, 777x


tthermwood_lsam_header


Boeing and Thermwood Partner to Demonstrate New 3D Printing Technology

Boeing and Thermwood have employed additive manufacturing technology to produce a large, single-piece tool for the 777X program.  The project is demonstrating that additive manufacturing is ready to produce production quality tooling for the aerospace industry.

Thermwood used a Large Scale Additive Manufacturing (LSAM) machine and newly developed Vertical Layer Print (VLP) 3D printing technology to fabricate the tool as a one-piece print, eliminating the additional cost and schedule required for assembly of multiple 3D printed tooling components. In the joint demonstration program, Thermwood printed and trimmed the 12-foot-long R&D tool at its southern Indiana demonstration lab and delivered it to Boeing in August 2018.

Boeing Research & Technology engineer Michael Matlack believes the use of Thermwood’s additive manufacturing technology in this application provided a significant advantage, saving weeks of time and enabling delivery of the tool before traditional tooling could be fabricated.

Boeing & Thermwood tool after vertical layer printing

The tool was printed as a single piece from 20% carbon fiber reinforced ABS using the Vertical Layer Print system. Boeing purchased a Thermwood LSAM machine with the VLP functionality for the Interiors Responsibility Center (IRC) facility in Everett, Washington.

The ability to quickly produce large-scale tooling at a quality level suitable for a real world production environment represents a significant step in moving additive technology from the laboratory to the factory floor.

Boeing & Thermwood final machined part

Please click below for video  

 

More Information on LSAM

LSAM is based on exciting new technology developed from an entirely new direction.

LSAM is intended for industrial production. It is not a lab, evaluation or demonstration machine, but is instead a full-fledged industrial additive manufacturing system intended for the production of large scale components.

Thermwood has already applied for 19 separate patents on various aspects of this new technology (several have already been granted and more will be coming as development continues). LSAM is truly “state of the art” in this exciting new world of Large Scale Additive Manufacturing. 

The Secret to LSAM Print Quality...A Different Process

Examples of large parts easily printed on Thermwood's LSAM

Click for More Info on the Thermwood LSAM