Thermwood Validates Additive Production of Yacht Hull Molds

Posted by Duane Marrett on Tue, Dec 04, 2018

Tags: Thermwood, Thermwood LSAM, LSAM, 3D Print, 3D printing, Additive Manufacturing, Additive, Announcements, Yacht, Mold

Thermwood has already 3D printed a full size pattern which was used to produce production sport boat hull molds. Much larger vessels, yachts for example, require a different approach. In these instances, it is desirable to print the mold itself rather than print a plug or pattern from which a mold is made.

Working with an undisclosed marine industry collaborator, Thermwood has printed a scale model of such a hull mold to test and validate the process.

Video

Printing The Mold Itself - No Plug/Pattern Necessary

The 1/7th scale test mold for this project is approximately seven feet long (the full size hull is approximately 50 foot). It was printed from 20% carbon fiber filled ABS using Thermwood’s LSAM additive manufacturing machine.

Six separate pieces of different lengths, the longest two, each being over seven feet long, were printed concurrently using LSAM’s Vertical Layer Print capability. Printing required about 30 1/2 hours.

The ability to simultaneously print multiple parts of variable heights highlights the flexibility of both the vertical print process as well as Thermwood’s LSAM Print3D slicing software. The parts were then trimmed on the same machine and assembled into two mold halves.

More Details

The tool includes a deep undercut at the transom, so the finished mold needs to be two pieces, split down the middle. These mold halves are clamped together for layup and then separated to remove the finished hull after curing.

Molds for hulls of longer than fifty feet will be printed in multiple sections, assembled for hull layup and then disassembled to remove the finished part. The test tool printed here simulates that assembly and disassembly process.

Thermwood LSAM Yacht mold split down the middle
 
Thermwood LSAM Yacht mold split down the middle

The tool printed in this program will be tested using production materials in a production environment. Thermwood continues to work on methods and techniques needed to refine this into a production ready process.

Thermwood believes that the marine industry will benefit significantly from emerging large scale additive manufacturing technology and that this project is a significant first step toward the direct production of large vessel tooling.

Thermwood LSAM Yacht mold joined together

Closeup of Thermwood LSAM Yacht mold joined together

Closeup of Thermwood LSAM Yacht mold joined together


More Information on LSAM

LSAM is based on exciting new technology developed from an entirely new direction.

LSAM is intended for industrial production. It is not a lab, evaluation or demonstration machine, but is instead a full-fledged industrial additive manufacturing system intended for the production of large scale components.

Much of the technology used in Thermwood’s LSAM machines and print process is completely new. Thermwood has already received numerous patents on these revolutionary developments and many more are in the works. In addition to the projects already announced, many other exciting results that LSAM has already achieved are covered by non-disclosure agreements and must be kept secret. LSAM is truly state-of-the-art in the exciting new world of large scale additive manufacturing.

The Secret to LSAM Print Quality...A Different Process

Examples of large parts easily printed on Thermwood's LSAM

Click for More Info on the Thermwood LSAM

Sabic Displays Thermwood LSAM Printed Tool at Formnext Show

Posted by Duane Marrett on Tue, Nov 20, 2018

Tags: Thermwood, Thermwood LSAM, LSAM, 3D Print, 3D printing, Additive Manufacturing, Additive, Announcements, SABIC, Formnext, Trade Shows

Sabic, a Saudi diversified manufacturing company, active in petrochemicals, chemicals, industrial polymers, fertilizers, and metals recently showed an additive manufactured aerospace tool in its booth at the recent Formnext additive manufacturing trade show in Frankfort Germany.

The tool, which was 3D Printed and trimmed on Thermwood’s LSAM® demonstration system at its Southern Indiana headquarters, is made from Sabic’s ULTEM™ high temperature thermoplastic composite material. 

Tool made on Thermwood LSAM displayed in SABIC booth at Formnext 2018 

Tool made on Thermwood LSAM displayed in SABIC booth at Formnext 2018

SABIC’s portfolio of THERMOCOMP™ AM reinforced compounds, which includes materials based on ULTEM™ resin, is helping to encourage the use of large scale additive manufacturing for specialized applications, such as high-temperature autoclave tooling for the aerospace industry, reusable tooling for the cast concrete industry and a wide range of lower-temperature large part thermoforming tooling. Printed tools can help to reduce cost, construction time, inventory and weight vs. traditional steel tools.


The Details

At the Formnext show, SABIC featured a thermoforming tool for an aircraft interior panel printed on a Thermwood LSAM® machine using THERMOCOMP™ AM EC004XXAR1 compound, a SABIC material based on ULTEM™ resin with 20 percent carbon fiber reinforcement.

Two tools, a male and female of the same shape and dimensions, were printed at Thermwood’s demonstration center in Southern Indiana at the same time in 6 hours and 7 minutes using 449 pounds of material. Trimming required an additional 6.5 hours per part or 13 hours total.

Tool made on Thermwood LSAM displayed in SABIC booth at Formnext 2018


About Sabic

SABIC is a global leader in diversified chemicals headquartered in Riyadh, Saudi Arabia. It manufactures on a global scale in the Americas, Europe, Middle East and Asia Pacific, making distinctly different kinds of products:  chemicals, commodity and high performance plastics, agri-nutrients and metals. The company has more than 35,000 employees worldwide and operates in more than 50 countries, with innovation hubs in five key geographies – USA, Europe, Middle East, South East Asia and North East Asia.


About Thermwood

outside_building_2Thermwood is a US based, multinational, diversified CNC machinery manufacturer that markets its products and services through offices in 11 countries. Thermwood is the oldest manufacturer of highly flexible, 3 & 5 axis high-speed machining centers known as CNC routers.  Thermwood has also become a technology leader in large scale additive manufacturing of thermoplastic composite molds, tooling, patterns and parts with its line of LSAM (Large Scale Additive Manufacturing) machines that both 3D print and trim on the same machine.


 More Information on LSAM

LSAM is based on exciting new technology developed from an entirely new direction.

LSAM is intended for industrial production. It is not a lab, evaluation or demonstration machine, but is instead a full-fledged industrial additive manufacturing system intended for the production of large scale components.

Much of the technology used in Thermwood’s LSAM machines and print process is completely new. Thermwood has already received numerous patents on these revolutionary developments and many more are in the works. In addition to the projects already announced, many other exciting results that LSAM has already achieved are covered by non-disclosure agreements and must be kept secret. LSAM is truly state-of-the-art in the exciting new world of large scale additive manufacturing.

The Secret to LSAM Print Quality...A Different Process

Examples of large parts easily printed on Thermwood's LSAM

Click for More Info on the Thermwood LSAM

Thermwood Collaborating with the Navy to Explore Additive Manufacturing Technology

Posted by Duane Marrett on Wed, Nov 14, 2018

Tags: Thermwood, Thermwood LSAM, LSAM, 3D Print, 3D printing, Additive Manufacturing, Additive, Announcements, Navy, Naval Surface Warfare, Submarine


Thermwood LSAM


Thermwood Corporation has entered into a collaborative program with the Naval Surface Warfare Center, Carderock Division to explore the use of additive manufacturing technology in developing marine models for ship and ship systems testing.

Part after printing and trimming

Please click below for video 

The Details

Carderock Division is the U.S. Navy's state-of-the-art research, engineering, modeling and test center for ships and ship systems. It is the largest, most comprehensive establishment of its kind in the world, serving a dual role in support of both our U.S. naval forces and the maritime industry. 

Navy and maritime communities have come to depend on their expertise and innovative spirit in developing advanced platforms and systems, enhancing naval performance, reducing operating costs and addressing the Navy's evolving mission.    

Part after printing and trimming

This initial validation program was centered on printing an unclassified scale nose of a submarine using Thermwood’s LSAM additive manufacturing system. The part was printed using 20% carbon fiber filled ABS in 11 hours and 45 minutes using traditional horizontal layer printing and a 40mm melt core. Final trim required 5 hours. Both printing and trimming were completed on the same machine, using Thermwood’s 10’ x 20’ LSAM at its demonstration lab in Southern Indiana.

Because of layer cooling requirements, the print rate for this part was less than half of the maximum rate the machine is capable of. It is expected that, moving forward, this program will include the printing of additional components using both horizontal and vertical layer printing.

Unclassified scale nose of a submarine

Close-up inside part

Close-up edge of part


More Information on LSAM

LSAM is based on exciting new technology developed from an entirely new direction.

LSAM is intended for industrial production. It is not a lab, evaluation or demonstration machine, but is instead a full-fledged industrial additive manufacturing system intended for the production of large scale components.

Much of the technology used in Thermwood's LSAM machines and print process is completely new. Thermwood has already received numerous patents on this revolutionary development and many more are in the works. Many exciting results that LSAM has already achieved are covered by non-disclosure agreements and must be kept secret.  LSAM is truly state-of-the-art in the exciting new world of large scale additive manufacturing.

The Secret to LSAM Print Quality...A Different Process

Examples of large parts easily printed on Thermwood's LSAM

Click for More Info on the Thermwood LSAM

Thermwood Announces Vertical Layer Printing

Posted by Duane Marrett on Thu, Oct 25, 2018

Tags: Thermwood, Thermwood LSAM, LSAM, 3D Print, 3D printing, Additive Manufacturing, Additive, Announcements, VLP, Vertical Layer Printing, aerospace

Thermwood has released a Vertical Layer Printing (VLP) option for its LSAM (Large Scale Additive Manufacturing) machines. This option allows parts to be printed which are as long as the machine table itself.

It does this by adding a second moving table, mounted perpendicular to the main fixed horizontal table. As layers are printed, this vertical table moves after each layer is printed, growing the part along the length of the machine rather than growing it upward. Thermwood’s “controlled cooling” print technology minimizes sag, which might otherwise pose a serious problem if the part were kept at an elevated temperature, as is common with traditional thermoplastic composite printing.

Vertical Layer Printing on a Thermwood LSAM


VLP Example Video

12 Foot Long ABS Trim Fixture for Boeing 777x Aircraft

As previously announced, one of the initial parts printed with this system is a 12 foot long, carbon fiber reinforced ABS trim fixture for use in the production of the Boeing 777X aircraft.

12 Foot ABS Trim Fixture for Boeing 777x printed on a Thermwood LSAM

VLP More Info

During development, Thermwood has vertically printed and validated the use of a variety of polymers, including high temperature materials such as PSU, PESU and PEI with good results. It appears that parts printed using VLP are structurally and functionally identical to parts printed in the traditional horizontal layer orientation.

This means that, just as with traditional horizontally printed LSAM parts, molds and tools printed using VLP maintain vacuum in an autoclave to aerospace standards right from the machine, without the need for any type of external coating.

Versatile Vertical Layer Printing

During VLP printing, the growing part rides on Teflon coated stainless steel belts. The belts and table drives (which can be fitted to any LSAM that is at least 20 feet long), have been designed to process parts which weigh up to fifty thousand pounds. Thermwood believes that this is more than adequate for anything customers are considering today.

Thermwood LSAM VLP Teflon coated stainless steel belt

During VLP printing, the growing part rides on Teflon coated stainless steel belts.

Print Long Parts in One Piece with VLP

The main advantage of Vertical Layer Printing is that long parts can be printed in one piece.

While it might be faster to print multiple sections of a large part simultaneously, they must then be bonded together so that they can be machined as a single piece. There are some disadvantages to this approach:

  • It requires time, labor and effort to machine mating surfaces, glue them together and wait for the adhesive to completely cure.
  • It may also require more than one bonding session for a larger part which typically requires more time and effort than simply printing the part in one piece.
  • Also, gluing printed parts together generally only works for certain room temperature or low temperature polymers.
  • Higher temperature materials are generally chemically and solvent resistant enough that they don’t bond well enough for autoclave use. This means if you want to 3D print a really large autoclave tool using a high temperature polymer, printing it in one piece is the only real option. Thermwood’s VLP now makes this both feasible and practical.

Quick Change from Horizontal to Vertical

VLP has been designed so that the machine can be reconfigured from standard horizontal layer printing to vertical layer printing or back again in a matter of a few hours. It is clear that technology exists, right now today, to 3D print large autoclave capable aerospace tooling on a production basis. Thermwood has already been granted patent protection on key aspects of its Vertical Layer Print technology. 


More Information on LSAM

LSAM is based on exciting new technology developed from an entirely new direction.

LSAM is intended for industrial production. It is not a lab, evaluation or demonstration machine, but is instead a full-fledged industrial additive manufacturing system intended for the production of large scale components.

Thermwood has already applied for 19 separate patents on various aspects of this new technology (several have already been granted and more will be coming as development continues). LSAM is truly “state of the art” in this exciting new world of Large Scale Additive Manufacturing. 

The Secret to LSAM Print Quality...A Different Process

Examples of large parts easily printed on Thermwood's LSAM

Click for More Info on the Thermwood LSAM

Boeing and Thermwood Partner to Demonstrate New 3D Printing Technology

Posted by Duane Marrett on Tue, Oct 09, 2018

Tags: Thermwood, Thermwood LSAM, LSAM, 3D Print, 3D printing, Additive Manufacturing, Additive, Boeing, Announcements, VLP, Vertical Layer Printing, aerospace, 777x


tthermwood_lsam_header


Boeing and Thermwood Partner to Demonstrate New 3D Printing Technology

Boeing and Thermwood have employed additive manufacturing technology to produce a large, single-piece tool for the 777X program.  The project is demonstrating that additive manufacturing is ready to produce production quality tooling for the aerospace industry.

Thermwood used a Large Scale Additive Manufacturing (LSAM) machine and newly developed Vertical Layer Print (VLP) 3D printing technology to fabricate the tool as a one-piece print, eliminating the additional cost and schedule required for assembly of multiple 3D printed tooling components. In the joint demonstration program, Thermwood printed and trimmed the 12-foot-long R&D tool at its southern Indiana demonstration lab and delivered it to Boeing in August 2018.

Boeing Research & Technology engineer Michael Matlack believes the use of Thermwood’s additive manufacturing technology in this application provided a significant advantage, saving weeks of time and enabling delivery of the tool before traditional tooling could be fabricated.

Boeing & Thermwood tool after vertical layer printing

The tool was printed as a single piece from 20% carbon fiber reinforced ABS using the Vertical Layer Print system. Boeing purchased a Thermwood LSAM machine with the VLP functionality for the Interiors Responsibility Center (IRC) facility in Everett, Washington.

The ability to quickly produce large-scale tooling at a quality level suitable for a real world production environment represents a significant step in moving additive technology from the laboratory to the factory floor.

Boeing & Thermwood final machined part

Please click below for video  

 

More Information on LSAM

LSAM is based on exciting new technology developed from an entirely new direction.

LSAM is intended for industrial production. It is not a lab, evaluation or demonstration machine, but is instead a full-fledged industrial additive manufacturing system intended for the production of large scale components.

Thermwood has already applied for 19 separate patents on various aspects of this new technology (several have already been granted and more will be coming as development continues). LSAM is truly “state of the art” in this exciting new world of Large Scale Additive Manufacturing. 

The Secret to LSAM Print Quality...A Different Process

Examples of large parts easily printed on Thermwood's LSAM

Click for More Info on the Thermwood LSAM

LSAM Printed PESU Tool is Vacuum Ready Without the Use of External Coatings

Posted by Duane Marrett on Mon, Oct 08, 2018

Tags: Thermwood, Thermwood LSAM, LSAM, 3D Print, 3D printing, Additive Manufacturing, Additive, Announcements, Test Results

LSAM Printed PESU Tool is Vacuum Ready Without the Use of Coatings

Thermwood recently printed a tool using PESU (which is a high temp material mixed with 25% carbon fiber) to test for vacuum integrity on an LSAM (Large Scale Additive Manufacturing) system.  After printing and machining the tool, we vacuum bagged it and immediately achieved 28 InHg.  The vacuum line to the bag was then removed, and almost 2 hours later, the vacuum had only dropped 1 InHg to 27 InHg. 

This test result was achieved without the use of any type of external coatings or sealers - the bag was placed directly on the final trimmed surface. 

LSAM tool vacuum test - with vacuum line attached


LSAM tool vacuum test - holding vacuum with vacuum line attached


LSAM tool vacuum test - holding vacuum with vacuum line removed


LSAM tool vacuum test - holding vacuum with vacuum line removed - Closeup


LSAM PESU Part - Side View

See this Process in Person at CAMX 2018

Thermwood will have this tool on display to demonstrate this process in our booth (J60) at the upcoming CAMX show held in Dallas, TX on Oct 16th-18th. 


More Information on LSAM

LSAM is based on exciting new technology developed from an entirely new direction.

LSAM is intended for industrial production. It is not a lab, evaluation or demonstration machine, but is instead a full-fledged industrial additive manufacturing system intended for the production of large scale components.

Thermwood has already applied for 19 separate patents on various aspects of this new technology (several have already been granted and more will be coming as development continues). LSAM is truly “state of the art” in this exciting new world of Large Scale Additive Manufacturing. 

The Secret to LSAM Print Quality...A Different Process

Examples of large parts easily printed on Thermwood's LSAM

Click for More Info on the Thermwood LSAM

Thermwood will be exhibiting at the upcoming IMTS Additive Manufacturing Conference 2018 in Chicago, IL

Posted by Duane Marrett on Mon, Sep 10, 2018

Tags: Thermwood, Announcements, Additive Manufacturing, 3Dprinting, IMTS, Additive, Thermwood LSAM, LSAM, Trade Shows


Thermwood is a platinum sponsor of the 2018 IMTS Additive Conference in Chicago, IL


Thermwood LSAM 10'x20' Machine ShownThe Additive Conference 2018 (September 11th and 12th) in Chicago, IL starts this week, and Thermwood will be there to talk LSAM (Large Scale Additive Manufacturing). 

We will have 3D printed samples to see and  touch as well as videos and literature.  Our knowledgeable sales staff will also be on hand to help answer any questions you may have about the future of Large Scale Additive Manufacturing and how the Thermwood LSAM can help your company charge ahead in this new area. 

More Information on LSAM

LSAM is based on exciting new technology developed from an entirely new direction.

LSAM is intended for industrial production. It is not a lab, evaluation or demonstration machine, but is instead a full-fledged industrial additive manufacturing system intended for the production of large scale components.

Thermwood has already applied for 19 separate patents on various aspects of this new technology (several have already been granted and more will be coming as development continues). LSAM is truly “state of the art” in this exciting new world of Large Scale Additive Manufacturing. 

LSAM produces superior printed parts.

 Request More Information from Thermwood

 

The Secret to LSAM Print Quality… A Different Process

Posted by Duane Marrett on Fri, Aug 17, 2018

Tags: Thermwood, Thermwood LSAM, LSAM, 3D Print, 3D printing, Additive Manufacturing, Additive

The Secret to LSAM Print Quality… A Different Process

Prior to LSAM, 3D polymer printing was all done using essentially the same approach. Parts were printed with a small print bead onto a hot table, in a heated chamber, keeping the printed part hot until printing was complete.

While this worked reasonably well for smaller net shape parts, scaling the process up for large near-net-shape parts didn’t work quite as well.


A Different Approach

Thermwood took a fundamentally different approach with our LSAM large scale additive manufacturing system. Instead of printing with a small bead in a heated environment, Thermwood uses a large bead, printed at room temperature in an essentially “continuous cooling” process.

Thermwood LSAM compression wheel printing a large bead.

The beads are large enough, with enough heat energy, to completely fuse with the previous layer. Thermwood also employs a temperature controlled “compression wheel” to form the round melt coming from the print nozzle into a flattened bead and fuse it with the previous layer.

With this process, print speed is essentially controlled by the cooling rate of the polymer being printed, rather than by the output of the print head. The printed bead must cool enough to support the next layer, but must still be warm enough to fuse completely with it.

This means that there is a specific temperature range, which is different for each polymer, where this approach to printing works. Each polymer requires a certain amount of time to cool to within that temperature range. That amount of time is the fastest that a layer can be printed, regardless of its size.

Thermwood LSAM can easily print very large parts

The output capacity of the print head simply determines how large a layer you can print in the amount of time available for each layer. Thermwood’s standard 40mm melt core can print layer lap lengths of over 200 ft. with most polymers. For even larger parts, Thermwood is working on an even larger melt core which can be retrofitted into the same print head housing as the 40mm core.

This process yields almost perfectly fused structures. Molds printed using the LSAM process routinely hold vacuum at elevated temperature and pressure in an autoclave without the need for any type of external coating.

Examples of large parts easily printed on Thermwood's LSAM

Unique Part Hold Down Method

The only issue remaining was how to hold the parts during printing. In the previous process, polymer parts tend to stick to a heated table. Since Thermwood’s process doesn’t have a heated table, this wouldn't work. Also, since parts are both printed and trimmed on the same machine with LSAM, the part needed to be held for trimming after it was printed and cooled. Parts generally release from a heated table when they cool down.

LSAM's Patented "Bead Board"

Part printed on Thermwood LSAM"s patented "bead board"

Thermwood’s approach to this requirement turned out to be quite unique. We developed a “bead board” to hold the parts both during printing and trimming.

The beard board consists of a plywood panel to which ABS pellets or “beads” are glued.

When a part is printed with this method, it fuses with the ABS beads holding it to the board, but one additional thing happens. Heat from the printed bead not only heats the ABS beads but also heats the glue holding them.

The glue softens enough that the beads can move on the board as the part cools and shrinks, eliminating cooling stresses that might otherwise be generated by a more rigid system. Once cool, the glue re-hardens holding the part securely for trimming. A couple of large screwdrivers and a hammer will remove the part once it is complete. 

LSAM Printing - Final Thoughts

This print approach required an almost complete rethinking of the print head design, control system operation and software, and we will explore those issues later.

For now, know that LSAM printing, at its very core, is fundamentally different. 

Complex part printed on Thermwood's LSAM


More Information on LSAM

LSAM is based on exciting new technology developed from an entirely new direction.

LSAM is intended for industrial production. It is not a lab, evaluation or demonstration machine, but is instead a full-fledged industrial additive manufacturing system intended for the production of large scale components.

Thermwood has already applied for 19 separate patents on various aspects of this new technology (several have already been granted and more will be coming as development continues). LSAM is truly “state of the art” in this exciting new world of Large Scale Additive Manufacturing. 

LSAM produces superior printed parts.

Click for More Info on the Thermwood LSAM

Thermwood LSAM 10'x40' - The World's Largest Composite 3D Printer is Now Installed at Local Motors!

Posted by Duane Marrett on Wed, Jun 27, 2018

Tags: Thermwood, Thermwood LSAM, LSAM, 3D Print, 3D printing, Additive Manufacturing, Additive, Local Motors, World's Largest 3D Composite 3D Printer, Olli

Installation of the world's largest composite 3D Printer is now complete at Local Motors. This massive Thermwood LSAM 10'x40' is ready to get to work making the Olli! 

Installation of the world's largest composite 3D Printer is now complete at Local Motors. This massive Thermwood LSAM 10'x40' is ready to get to work making the Olli!
Thermwood LSAM 10'x40' - Ready to work! 


Looking down the working envelope from the print gantry side of the Thermwood 10'x40' LSAMLooking down the working envelope from the print gantry side of the Thermwood 10'x40' LSAM

A part in the process of being printed on the Thermwood 10'x40' LSAM at Local MotorsA part in the process of being printed on the Thermwood 10'x40' LSAM at Local Motors

Looking down the working envelope from the print gantry side of the 10'x40' Thermwood LSAM at Local Motors
Looking down the working envelope from the print gantry side

Another view of the 10'x40' LSAM at Local MotorsAnother view of the 10'x40' LSAM at Local Motors

A view from the trim gantry side of the Thermwood LSAM 10'x40' at Local MotorsA view from the trim gantry side of the Thermwood LSAM 10'x40' at Local Motors

About The Thermwood LSAM

Thermwood offers a line of dual gantry additive manufacturing machines which both print and trim parts on the same machine. These are large industrial additive manufacturing machines that can be up to 100 feet long.  Thermwood LSAM 10'x20'

LSAM (pronounced L-sam) represents an all new technology for large scale 3D printing of thermoplastic polymers. While other large scale additive efforts attempt to scale up small, filament-fed desktop printer techniques, LSAM is, at its core, designed for additive manufacturing of large structures using a fundamentally different approach

LSAM is different. The print process is different. The machine is different. The print head is different. The control is different. The software is different and the resulting parts are different.

LSAM is intended for industrial production. It is not a lab, evaluation or demonstration machine, but is instead a full-fledged industrial additive manufacturing system intended for the production of large scale components.

Although suitable for producing a wide variety of components, Thermwood is focusing on producing industrial tooling, masters, patterns, molds and production fixtures for a variety of industries including aerospace, automotive, foundry and boating.       

About Local Motors

Local MotorsLocal Motors is a ground mobility company focused on shaping the future for the better. Founded in 2007 with a belief in open collaboration and co-creation, Local Motors is a digital OEM, capable of micro-manufacturing, sales, service and operations all from a local footprint using a microfactory.

Meet Olli

 

 

Thermwood LSAM 10'x20' and 10'x40' in Production

Posted by Duane Marrett on Wed, May 16, 2018

Tags: Thermwood, Thermwood LSAM, LSAM, 3D Print, 3D printing, Additive Manufacturing, Additive

Birds-eye view of two Thermwood LSAM (Large Scale Additive Manufacturing) machines currently in production here at our factory. Get up close and personal with a 10'x20' as well as a massive 10'x40' LSAM Large Format 3D printer. 

About The Thermwood LSAM

Thermwood offers a line of dual gantry additive manufacturing machines which both print and trim parts on the same machine. These are large industrial additive manufacturing machines that can be up to 100 feet long.  

Thermwood LSAM 10'x20'

The Thermwood LSAM is used to produce large to very large sized components from reinforced thermoplastic composite materials. 

Although suitable for producing a wide variety of components, Thermwood is focusing on producing industrial tooling, masters, patterns, molds and production fixtures for a variety of industries including aerospace, automotive, foundry and boating.