Purdue University to Establish Thermwood LSAM Research Laboratory

Posted by Duane Marrett on Tue, Apr 13, 2021

Tags: Thermwood, Announcements, Purdue, Thermwood LSAM, Thermwood LSAM Research Laboratory

Purdue University’s Composites Manufacturing Simulation Center (CMSC) and Thermwood Corporation have agreed to establish a large scale additive manufacturing laboratory to perform industry-funded research into large scale composite thermoplastic additive manufacturing.

Purdue Composites Manufacturing and Simulation Center

Thermwood LSAM Logo

The new facility will be located in Purdue’s Indiana Manufacturing Institute located in the Purdue Research Park in West Lafayette, Indiana and will be staffed and operated by Purdue CMSC personnel. The official name for the new facility is the Thermwood LSAM Research Laboratory at Purdue University”.

LSAM Additive Printer (10'x5')

Thermwood LSAM Additive Printer 10'x5'

About the Thermwood LSAM Reseach Laboratory at Purdue University

The new laboratory will be equipped with an LSAM 105 (ten-five) Large Scale Additive Printer and a corresponding 5 axis LSAM Additive Trimmer plus a variety of support systems. This installation is capable of printing and trimming complex geometries up to five feet by ten feet by four feet tall at print rates of up to 200 lbs. per hour. Commercial maximum print temperature for LSAM printers is usually limited to 450oC, however, this particular system has been modified to allow testing at even higher temperatures for experimentation with innovations in materials normally not used in additive manufacturing.

This effort will be enhanced with the newly announced ability of Thermwood’s LSAM large scale additive manufacturing systems to measure and precisely control the temperature of a printed layer at the instant a new layer is deposited. This will support research into the very core of the additive print process and will serve to provide validation of Purdue’s extensive additive manufacturing simulation capabilities for large scale additive manufacturing.


Not only will this effort improve the overall quality of large scale additive printing but it should also increase our knowledge and understanding of the basic process of fusing layers together into a homogeneous structure”
says Ken Susnjara, Founder, Chairman and CEO of Thermwood.


Extrusion deposition composites additive manufacturing is a major innovation that will contribute to the development of tailored products with unique performance and just in time availability.”  
Adds Dr. R. Byron Pipes, Executive Director of Purdue’s Composite Manufacturing & Simulation Center, the research organization where the LSAM system will be installed.


Purdue plans to partner with industry to provide services to enhance, encourage and expand the adoption of large-scale additive manufacturing for diverse industrial applications. They also plan to work with polymer suppliers to refine formulations and determine the ideal processing parameters necessary to produce the absolute highest quality large scale printed parts possible.

Collaborative efforts of this type bring together diverse organizations that each specialize in different aspects of this emerging technology and often produce results that none of the participants could possibly achieve on their own. Both Purdue and Thermwood are confident that this will be the outcome of their collaborative effort.

About the Composites Manufacturing and Simulation Center

The Composites Manufacturing and Simulation Center (CMSC) of the College of Engineering and the Purdue Polytechnic are located in over 30,000 square feet of the Indiana Manufacturing Institute building. CMSC consists of faculty experts in composites manufacturing, a professional staff of doctoral degree engineers, a support staff and research students in doctoral, masters and bachelor’s degree programs of the Schools Aeronautics and Astronautics, Chemical Engineering and Materials Engineering, as well as, the Department of Aviation Technology in the Polytechnic.

Purdue Manufacturing and Composites Research Center

A comprehensive set of laboratories is available at the IMI for the study of composites manufacturing processes, characterization of composite materials, and the validation of simulation software essential to development and verification of the digital twin concepts in composite manufacture and performance. Focus specialties include extrusion deposition additive manufacturing, composites autoclave processing of continuous fiber systems, compression and injection molding of discontinuous fiber composites, prepreg impregnation, infusion molding, sheet forming, complex mold-forming and hybrid continuous/discontinuous fiber systems. Workflow simulations are being developed to provide for end-to-end digital twins of these manufacturing processes. Accordingly, manufacturing informed performance predictions are a direct outcome of these workflow analyses.

3DEXPERIENCE Education Center of Excellence in Advanced Composites

To advance the development of digital twin, digital thread and model-based engineering, Dassault Systèmes and CMSC established the 3DEXPERIENCE Education Center of Excellence in Advanced Composites on October 28, 2020. The simulation center was founded on a seven-year partnership between Purdue University and Dassault Systèmes (2013-2020) and it is expected that this new engagement will bring significant benefits to the new relationship with Thermwood as the partners work together to bring the advantages of the digital age to society.

3DEXPERIENCE Platform and Thermwood LSAM

Together, they will advance the digital enterprise by developing the human talent essential to this new paradigm and by utilizing the Thermwood LSAM technology and the 3DEXPERIENCE platform to exercise digital twins of complex composites manufacturing and performance to demonstrate the power to predict phenomena that are understood today only by empirical experiences. The Partnership will work together to introduce these concepts to a wide range of industries within the advanced composites community from the original equipment manufacturer level to the supply chain industries. The philosophy of these relationships will be to create a learning environment at multiple levels – from advanced research in manufacturing and performance of advanced composites to the engagement of students at all levels needed to build the workforce of the future for Industry 4.0.

LSAM Info Request

Thermwood Announces Completion of the First LSAM 1010

Posted by Duane Marrett on Wed, Mar 31, 2021

Tags: Thermwood, Announcements, Thermwood LSAM, LSAM 1010

Thermwood has completed the first of a new type of additive print and trim system, the LSAM 1010. This is a fixed table, high wall system with both print and trim head mounted on a single gantry. Although with a ten foot by ten foot table, it is a bit smaller than the larger dual gantry flagship LSAM systems, it does require a significantly larger gantry.

LSAM 1010 Shown

The LSAM 1010 can both print and trim, but not at the same time. It uses the same 40mm print head that is standard on the larger LSAM systems and the same five axis trim head. It has the same 5 foot high print and trim capability of the larger machines. The addition of both of these on a single gantry adds two major new requirements.

Thermwood LSAM 1010 with print and trim head on same gantry

Two Major New Requirements

First, the gantry must be significantly longer to accommodate the width of both heads, while also allowing both heads to cover the entire table.

Thermwood LSAM 1010 with open doors

Also, the gantry must be significantly stronger to rigidly support both the print and trim head, which together weigh well over 7,000 pounds, resulting in a live load (the parts of the machine that actually move) of over 18,000 pounds. Despite the weight, the machine can move at speeds up to almost three feet per second.  This is not a small machine.

Thermwood LSAM 1010 with new larger gantry

New M400 Helps Build Large Machines

The production of this new gantry has been made possible by the commissioning of Thermwood’s new M400 five axis metal working system which can machine parts up to 35 feet long. The gantry design uses Thermwood’s slot and tab construction method which produces engineered steel structures that are extremely strong and stiff. 

Thermwood's M400 Helps Build Large Machines

More Details About the LSAM 1010

Since the LSAM 1010 has a fixed table, there is no practical part weight limitation. 

The LSAM 1010 has the same 200 lb maximum print rate capability of the larger flagship LSAM systems but is still priced well under the LSAM 1020, which is the smallest dual gantry LSAM available. 

The LSAM 1010 is also available as a “print only” machine for companies who already have the necessary machining capacity, bringing the price down even more. 

The LSAM 1010 is ideal for companies whose size requirements fit the available envelope and where a sequential process production rate (print and then trim) is adequate. It is also ideal for companies who need relatively large, heavy parts but don’t need trim capability. The lower price point also makes the LSAM 1010 easier to cost justify for a wider variety of end applications. 

Largest Selection of Large Scale Additive Manufacturing Systems

Largest Selection of Large Scale Additive Manufacturing Systems

The LSAM 1010 is part of the LSAM product line which offers the largest selection of large scale additive manufacturing systems available anywhere. There is a system available for about any large scale additive requirement from a 5x5 Additive (Print Only) Printer to giant, dual gantry, print and trim machines up to 40 foot long. Longer machines are available however, 40 foot are the longest machines produced to date. 

Large Scale Additive Manufacturing Systems from the industry leader, LSAM by Thermwood.

Learn More About Large Scale Additive Manufacturing Systems from the industry leader, LSAM by Thermwood.

LSAM Info Request

Thermwood Announces Lower Cost LSAM Additive Systems

Posted by Duane Marrett on Tue, Mar 16, 2021

Tags: Thermwood, Announcements, Thermwood LSAM, LSAM Additive Printers

Thermwood Corporation, manufacturer of some of the largest composite thermoplastic additive manufacturing systems operating in industry today, has announced the availability of a new line of lower cost “print only” LSAM systems, called LSAM Additive Printers.

Thermwood’s current LSAM line of large scale, dual gantry, “print and trim”, near-net-shape additive manufacturing systems use an advanced print technology that produces high quality, fully fused products from a wide variety of reinforced composite thermoplastic polymers, including materials that process at high temperature like PSU, PESU, and PEI.

These systems are being used primarily to produce molds and tooling, most for aerospace and industrial production applications.

LSAM Additive Printer 10'x5' Table Shown

LSAM ADDITIVE PRINTER

Thermwood Corporation, manufacturer of some of the largest composite thermoplastic additive manufacturing systems operating in industry today, has announced the availability of a new line of lower cost “print only” LSAM systems, called LSAM Additive Printers.

Thermwood’s current LSAM line of large scale, dual gantry, “print and trim”, near-net-shape additive manufacturing systems use an advanced print technology that produces high quality, fully fused products from a wide variety of reinforced composite thermoplastic polymers, including materials that process at high temperature like PSU, PESU, and PEI.

These systems are being used primarily to produce molds and tooling, most for aerospace and industrial production applications.

SMALL BUT POWERFUL

NEW 30MM PRINT HEAD

To accommodate the request for a lower cost system, Thermwood refined and updated the gantry structure of its highly successful 5 axis CNC routers.  This machine was re-engineered to use the incredibly strong “slot and tab” structural steel approach used on flagship LSAM machines. The same table, base structure and servo drives used on their five axis CNC routers could be used pretty much as is. With these changes the “LSAM Additive Printer” was born.

Although smaller than the flagship systems, it is capable of producing large parts at temperatures up to 450° C, with overall size limited primarily by the table size and working envelope. 

Available Sizes

The new LSAM Additive Printers are all fixed gantry, moving table designs with table sizes of 5’x5’ and 5’x10’ and are capable of printing parts up to 4’ high.  The 5’x10’ machines are available in two styles, 5’ wide with 10’ of front to back motion or 10’ wide with 5’ of front to back motion. Maximum table print weight is 1,000 pounds, however, the 10’ wide 5’ deep machine is available with a dual servo drive which doubles the weight carrying capability. It is planned to equip the 5’ wide 10’ deep version with a Vertical Layer Printing option which will allow it to vertically print parts up to ten feet tall.

Trimming Printed Parts

For trimming printed parts, Thermwood recommends our new LSAM Additive Trimmer, which is available in the same table sizes as these new LSAM Additive Printers.  It is available with up to 5’ of vertical travel, allowing it to trim completely around and over the top of the largest part the LSAM Additive Printer can print. As an added benefit, with both an LSAM Additive Printer and an LSAM Additive Trimmer, you can print and trim at the same time.

Although having a new LSAM Additive Printer plus an LSAM Additive Trimmer requires purchasing two machines, the combined cost of both is just over a third of the cost of an LSAM 1020 (which is currently the smallest flagship LSAM system that can both print and trim at the same time). The LSAM 1020 does have a much larger table, faster print head and the ability to do vertical layer printing up to 20 feet long, however, if you don’t need those capabilities, the new LSAM Additive Printers may be an answer. If you already have trim capability, the cost can be even lower.

lsam_trimmer_front_cropped

Same Powerful Features

The same powerful, feature rich LSAM control used on the large flagship LSAM systems, along with all its unique patented additive print features is standard on the new LSAM Additive Printers. A system for drying and conveying pelletized polymer material is also included as is a liquid chilling system to maintain temperature control on vital systems. This is especially important when processing high temperature materials.

Optional Enclosure

An optional enclosure that surrounds the machine is available.   The machine with this full enclosure can also be built to meet European CE standards.

LSAM Additive Printer (10'x5') table with optional enclosure

Optional Dual Hopper Dryer

The machine comes standard with a single hopper material dryer, however, an optional dual hopper dryer is also available for applications that change materials often.

Thermal Sensor Layer Automation System

Thermwood’s new Thermal Sensor Layer Automation System is also available on the LSAM Additive Printers. This is an exciting new system that automates the print process to easily and automatically obtain the highest quality layer to layer fusion.

Thermal Sensor Layer Automation System

With this system, a servo controlled thermal sensor, which travels with and rotates around the print nozzle, measures the temperature of the bead an instant before a new bead is added. This data is sent to the control which automatically adjusts print speed to print at the precise temperature that results in the best bead fusion for that particular polymer. Thermwood’s

LSAM print technology already produces the best quality, strongest large scale additive parts and this system not only makes it better but also easier.

Same Powerful Print 3D Slicing Software

The same Thermwood LSAM Print 3D slicing software used on all the other LSAM systems is used to program LSAM Additive Printers. Several levels of software training are available.

The Bottom Line

This new LSAM Additive Printer is intended to introduce LSAM additive technology to a whole new level of application and customer. It targets companies that want to print top quality, large composite thermoplastic parts, but don’t really need, nor can they cost-justify, the really large LSAM systems. These new systems also target companies who already have sufficient trimming capability and may only need a quality print function. Applications include industrial fixtures, molds (including high temperature molds), tooling, foundry patterns, and hundreds, if not thousands of similar applications.

With the addition of the LSAM Additive Printers, Thermwood now offers the largest selection of large scale additive manufacturing systems for thermoplastic composite materials in the industry with models available for just about every application and budget.

LSAM Broad Line of Additive Manufacturing Systems

LSAM Info Request

Thermwood LSAM 2020 Year in Review

Posted by Duane Marrett on Wed, Dec 09, 2020

Tags: Thermwood, Announcements, Video, 3D printing, LSAM, Thermwood LSAM, LSAM MT, LSAM 1010, LSAM 1020, 2020, Review

LSAM_SeriesRV3_2020_mod.fw-1Thermwood LSAM 2020 - Year in Review

The last 12 months have seen an incredible level of disruption in all industries, fueled in large part by the coronavirus pandemic.  COVID-19 has impacted nearly every aspect of the global economy, from manufacturing to supply chains to travel.

The additive industry wasn’t spared, with event cancellations and disruptions to regular business becoming the norm.  Thermwood pivoted in 2020 to continue our focus on innovation and development with our LSAM (Large Scale Additive Systems) line, and have made many new discoveries and advancements in our additive manufacturing program.

Below, we highlight some of the notable LSAM moments from 2020 that leaves us hopeful for the future of large scale additive manufacturing in 2021 and beyond:

LSAM Info Request


March 5th - Thermwood Announces Another New LSAM Model

Thermwood Introduces the LSAM 1010

To address the need for a lower cost enclosed additive machine, Thermwood developed the LSAM 1010. This system uses the walls from the larger LSAM systems with the gantry, control and sub-systems from the LSAM MT. 

The LSAM 1010 features a fixed 10 foot by 10 foot table. A single moving gantry carries both the print and trim heads as on the MT and, like the MT, it can both print and trim (but not at the same time). The print and trim heads on all Thermwood LSAMs are the same, so all machines can process virtually any reinforced composite thermoplastic materials available today.

With the introduction of the LSAM 1010, it became clear that Thermwood is committed to responding to customer requests and providing its industry-leading LSAM additive manufacturing technology in a variety of configurations to better fit varying customer requirements.


March 17th - Thermwood LSAM 1020 Quickly 3D Prints a Multi-Piece Foundry Pattern

 

This was a great exercise to demonstrate the capabilities of an LSAM to quickly make a multi-piece foundry pattern out of ABS (20% carbon fiber fill). 

The pattern was printed on an LSAM 1020 in 6 hours and 40 minutes, and machined on a Thermwood 5 Axis Model 90 (because of other projects that were pending on the LSAM).

More info


June 25th - Thermwood Builds Massive Metalworking Machine to Increase LSAM Production

Thermwood Builds Massive Metalworking Machine to Increase LSAM Production

Thermwood designed, fabricated and put into operation the largest machine it has ever built. The metalworking machine, dubbed internally as the M400, weighs 51 Tons (103,000 pounds) and is mounted on a special isolated, double steel reinforced concrete pad. It has a 15 foot wide, 35 foot long floor level steel table that by itself weighs 21,000 pounds.

More info


August 27th - Thermwood LSAM MT VLP Prints a High Temperature Part

In August, Thermwood demonstrated it's VLP (Vertical Layer Printing) capabilities on an LSAM MT 1010.  The high-temperature part was printed out of Techmer PM blended 25% carbon fiber filled PSU/PESU. 

Total print time for the project was 16 hours and 40 minutes, and the final weight of the part was 1,190 lbs.  The final part dimensions were 108.6" (x) x 33" (Y) x 45" (Z).

More info


September 17th - Thermwood and General Atomics Partner on Additive Tool with $50,000 Cost Savings

In September, Thermwood partnered with General Atomics to produce a CNC trim tool.  The tool was printed from ABS (20% Carbon Fiber Filled) in 16 hours.  Total machining time was 32 hours.  The final part weighed 1,190 lbs, and represented a cost savings of around $50,000 when compared to traditional methods.

Total lead time for the part decreased from 6-8 weeks to less than 2 weeks by utilizing the powerful LSAM system.

More info


September 24th - Take a Tour of the Thermwood LSAM

Also in September, LSAM Product Manager, Scott Vaal, took us on an informative tour of the Thermwood LSAM.

In this tour, Scott explains all the different aspects of the Thermwood LSAM and provides insight into this unique solution for large scale additive manufacturing.  

More info


October 22nd - A New Approach to 3D Printing a Yacht Hull Mold

A New Approach to 3D Printing a Yacht Hull Mold

In October, Thermwood printed a several sections from a 51 foot long yacht hull mold to demonstrate how only a single mold may be needed for the manufacture of larger vessels, such as yachts. 

The printed sections of this test mold were made of carbon fiber reinforced ABS from Techmer PM. ABS was chosen because of its physical properties and relatively low cost compared to other reinforced thermoplastics

More info


LSAM Info Request

Another Thermwood LSAM 10'x40' is Ready to Ship Out!

Posted by Duane Marrett on Fri, Oct 11, 2019

Tags: Thermwood, 3D printing, Additive, LSAM, 3D Print, Thermwood LSAM, Additive Manufacturing

Another Thermwood LSAM 10'x40' featuring optional VLP (Vertical Layer Printing) capability is ready to be packed up and shipped out! Look how small this massive LSAM makes the Model 70 10'x30' in production next to it look!
More Info on LSAM: http://bit.ly/2KheM0r

Overhead view of another 10'x40' Thermwood LSAM ready to be packed up and shipped out!
Overhead view of another 10'x40' Thermwood LSAM ready to be packed up and shipped out!


Some of the guys who helped build this latest LSAM pose with the machine.
Some of the guys who helped build this latest LSAM pose with the machine.


Looking down the table from the trim side to the print side of this 10'x40' Thermwood LSAM.
Looking down the table from the trim side to the print side of this 10'x40' Thermwood LSAM.


Optional VLP (Vertical Layer Printing) on this latest 10'x40' Thermwood LSAM.
Optional VLP (Vertical Layer Printing) on this latest 10'x40' Thermwood LSAM.


Perspective!
Perspective!


Another view from the trim side of this latest 10'x40' Thermwood LSAM.
Another view from the trim side of this latest 10'x40' Thermwood LSAM.


Look how small this massive LSAM makes the Model 70 10'x30' in production next to it look!Look how small this massive LSAM makes the Model 70 10'x30' in production next to it look!


A quick side-view of this latest 10'x40' Thermwood LSAM.


More Information on LSAM

LSAM is based on exciting new technology developed from an entirely new direction.

LSAM is intended for industrial production. It is not a lab, evaluation or demonstration machine, but is instead a full-fledged industrial additive manufacturing system intended for the production of large scale components.

Thermwood has already applied for over 45 separate patents on various aspects of this new technology (more than half of which have already been granted) and more will be coming as development continues. LSAM is truly “state of the art” in this exciting new world of Large Scale Additive Manufacturing. 

LSAM produces superior printed parts.

Click for More Info on the Thermwood LSAM

Air Force Research Laboratory, Boeing and Thermwood Partner on Low Cost Responsive Tooling Program

Posted by Duane Marrett on Thu, Aug 08, 2019

Tags: Thermwood, Announcements, Additive, LSAM, Thermwood LSAM, Additive Manufacturing, Boeing, Air Force, Air Force Research Laboratory

The United States Air Force Research Laboratory (AFRL) Manufacturing and Industrial Technology Division (ManTech) is interested in large scale polymer-based additively manufactured (AM) composite cure tooling. Boeing submitted an idea to ManTech’s Open BAA to evaluate the current state of additive manufacturing technology with respect to the fabrication of low cost autoclave capable tools for the production of composite aerospace components. The initial demo tool is for an AFRL concept aircraft fuselage skin (Figure 1). Boeing contracted Thermwood to demonstrate capability of their Large Scale Additive Manufacturing (LSAM) machine.  

Air Force Research Laboratory Conceptual Aircraft & Full-Scale Tool

Figure 1: Air Force Research Laboratory Conceptual Aircraft & Full-Scale Tool


Please click below for video


The Thermwood LSAM machine offers an innovative additive manufacturing machine capability with its Vertical Layer Printing (VLP). The vertical layer printing AM process provides a significant cost benefit by increasing the size components can be printed, thus reducing assembly cost for large tools. To validate the VLP process using high temperature autoclave-capable materials, Boeing and AFRL chose to 3D print a section of the large tool to evaluate the LSAM functionality. The Mid-Scale tool was printed on Thermwood’s LSAM  Additive Manufacturing Demonstration machine in Southern Indiana using a 40mm print core running 25% carbon fiber reinforced Polyethersulfone (PESU).

Mid-Scale Tool 3D Printing on Large Scale Additive Manufacturing (LSAM)
Figure 2: Mid-Scale Tool 3D Printing on Large Scale Additive Manufacturing (LSAM)

The initial test tool has the same width, height and bead path as the final mold, incorporates all major features of the final mold, but compressed in length being only 4 feet long. The final tool will be over 10 feet long. The Mid-Scale tool set a milestone achievement as the first high temperature tool printed using the VLP system. The Mid-Scale tool required 5 hours, 15 minutes to print with a print weight of 367 lbs. After final machining, the tool was probed for surface profile and tested for vacuum integrity. The tool passed room temperature vacuum test and achieved dimensional surface profile tolerances. The Full-Scale tool will weigh approximately 1400 pounds and require 18 hours to print.

Machining (left) and Probe (right) operation on a Thermwood LSAMFigure 3: Machining (left) and Probe (right) operation on a Thermwood LSAM

The program is progressing to the next step, producing a full size tool. Boeing and the Air Force are carefully documenting all operational parameters of the project to transition the technology to production programs. Additive manufactured autoclave tooling offers significant advantages over traditional methods of producing these tools. 3D printed tooling is less expensive and can be fabricated in days or weeks rather than months.

AFRL is very interested in tooling approaches for the Low-Cost Attributable Technology (LCAAT) program which has a goal to break the cost growth curve and field new systems faster.  AFRL Program Manager Andrea Helbach says, “We are interested in additively manufactured tooling’s ability to reduce the cost and time to procure autoclave capable tooling.  Additionally, AM tooling supports changes in vehicle design with minimal non-recurring expenses.” 

“Future fielded low cost, but capable UAV’s will need a responsive materials and manufacturing processes strategy” says Craig Neslen, LCAAT Initiative Manufacturing Lead.  “Additive manufactured composite tooling is one of many technologies being evaluated to ensure the industrial base can handle future manufacturing surge requirements as well as accommodate periodic system tech refresh activities which could necessitate minor vehicle design changes at an acceptable cost.”  


More Information on LSAM

LSAM is based on exciting new technology developed from an entirely new direction.

LSAM is intended for industrial production. It is not a lab, evaluation or demonstration machine, but is instead a full-fledged industrial additive manufacturing system intended for the production of large scale components.

Thermwood has already applied for 19 separate patents on various aspects of this new technology (several have already been granted and more will be coming as development continues). LSAM is truly “state of the art” in this exciting new world of Large Scale Additive Manufacturing. 

The Secret to LSAM Print Quality...A Different Process

Examples of large parts easily printed on Thermwood's LSAM

Click for More Info on the Thermwood LSAM

Ascent Aerospace Invests in Additive Manufacturing

Posted by Duane Marrett on Wed, Jul 17, 2019

Tags: Thermwood, Announcements, Why Purchase a Thermwood, Additive, LSAM, Thermwood LSAM, Additive Manufacturing, Ascent Aerospace

Ascent Aerospace Invests in Thermwood LSAM Additive Manufacturing

Santa Ana, CA - July 2019 – Ascent Aerospace, a leading provider of aerospace tooling systems, factory automation and integration solutions, is excited to announce its recent investment of a Large Scale Additive Manufacturing (LSAM) machine from Thermwood Corporation, a technology leader and manufacturer of CNC and 3D printing equipment based in Dale, IN.

With a 10’ x 40’ fabrication area, Ascent’s LSAM machine will be the largest available in the aerospace market, allowing for both the printing and machining of a wide range of thermoplastic composite materials.

With a 10’ x 40’ fabrication area, Ascent’s LSAM machine will be the largest available in the aerospace market, allowing for both the printing and machining of a wide range of thermoplastic composite materials.

The use of 3D printing in the aerospace tooling sector has continued to mature over the last several years and is accelerating in usage; with this, Ascent Aerospace plans to answer the industry's call and take additive technology to a new level by leveraging its deep expertise in tooling to commercialize production ready additive solutions. As a new tooling option for its customers, Ascent intends to utilize the LSAM machine to bring tools such as layup molds, masters, trimming/drilling fixtures and vacuum holding fixtures to market faster than ever before. The LSAM machine will be co-located with Ascent's composite tooling shop, autoclave and clean room in Santa Ana, California, and will allow Ascent to build targeted tools lighter and more efficiently, providing time and cost savings to its global customers.

The LSAM machine will have an industry leading build area, providing aerospace customers the opportunity to benefit from large-scale printed composite tooling. By combining this technology with Ascent's in-house tooling expertise and heritage engineering, it will be possible to fabricate and deliver fully functional select fixtures and molds with significantly reduced lead-times of a traditional metallic tool. The wide variety of materials that are compatible with the LSAM, such as ABS, Polycarbonate, Nylon, and PESU resins with reinforcing compounds, will further expand the selection of tooling solutions that Ascent will bring to the market. 

Michael Mahfet, the CEO of Ascent Aerospace, stated, "Our investment in the LSAM represents the next milestone in Ascent's multi-year technology roadmap and realization of expansive efforts studying the benefits of additive manufacturing within the aerospace tooling market. This capability positions us to remain the leader in new and innovative tooling solutions, supporting strong collaboration with our customers and supplementing our in-house, vertically integrated design and fabrication capabilities."

Ascent Aerospace is committed to challenging the industry norms, improving manufacturing processes and providing customers with the best solutions to meet their demands.

About Ascent Aerospace

Ascent Aerospace is a world renowned, single-source provider of production and automated assembly systems for the aerospace and defense industry. As the largest tooling group in the industry, Ascent produces a full suite of both mold and assembly tooling required for the aerospace manufacturing market, including the largest Invar molds ever made for aerospace.  As an automation provider and production system integrator, Ascent works with customers to develop their project and see it through from process engineering, to build and installation to ensure it is an efficient and cost effective solution. Visit www.ascentaerospace.com for more information.

More Information on LSAM

LSAM is based on exciting new technology developed from an entirely new direction.

LSAM is intended for industrial production. It is not a lab, evaluation or demonstration machine, but is instead a full-fledged industrial additive manufacturing system intended for the production of large scale components.

Much of the technology used in Thermwood’s LSAM machines and print process is completely new. Thermwood has already received numerous patents on these revolutionary developments and many more are in the works. In addition to the projects already announced, many other exciting results that LSAM has already achieved are covered by non-disclosure agreements and must be kept secret. LSAM is truly state-of-the-art in the exciting new world of large scale additive manufacturing.

The Secret to LSAM Print Quality...A Different Process

Examples of large parts easily printed on Thermwood's LSAM

Click for More Info on the Thermwood LSAM

Dimensional Innovations now has Kansas City’s biggest 3-D printer

Posted by Duane Marrett on Mon, May 13, 2019

Tags: Thermwood, Announcements, 3D printing, LSAM, Thermwood LSAM, Additive Manufacturing, Dimensional Innovations, Kansas City


Dimensional Innovations now has Kansas City’s biggest 3-D printer

Overland Park-based Dimensional Innovations unveiled its newest piece of equipment, a $2.2 million 3-D printer and five-axis router that can make items 10 feet wide, 20 feet long and 5 feet high.

Dimensional Innovations now owns the largest 3-D printer in the Kansas City area.

Dimensional Innovations now owns the largest 3-D printer in the Kansas City area.


©2019 Kansas City Buiness Journal.  All rights reserved.  Reprinted with permission

(Note this article was originally published on May 2nd, 2019, here)


Produced by Thermwood, the equipment is known as a Large Scale Additive Manufacturing (LSAM) machine. It can produce huge components from reinforced thermoplastic composite materials. It’s the only one of its kind in the Kansas City area and one of only a handful currently in use in the U.S.

“Within the design, architecture and construction space, we’re not aware of anyone else who has this capability,” Dimensional Innovations CEO Tucker Trotter said. “There is not really someone else we can look to for examples on how to use this equipment, so we’re going to have to define that. It puts pressure on our team because there aren’t answers yet, but it also opens up incredible opportunities.”

Trotter said the purchase of the LSAM was driven by a secret project DI isn't allowed to discuss at this time, for production of a large-scale, iconic element. It had limitations on weight, needed to be prefabricated so it could be assembled in the field, had to be strong enough to meet wind load and had fire-proofing requirements.

“I went into the discussion for this project thinking it was really not a good fit for us,” Trotter said. “I couldn’t see how we could do it. But the culture at DI is so cool that we had people here who didn’t take no for an answer and spoke up saying they thought we could do it and here’s how. It started as a crazy idea, but now that we’ve got this equipment, I think it’s really going to advance who we are and how we’re seen by a lot of people.”

The company's growth made the addition possible. DI's business had outgrown its headquarters at 3421 Merriam Drive in Overland Park, so it moved the sign fabrication business to a new shop at 15500 W. 108th St. in Lenexa. That created room at the headquarters, allowing the company to buy the LSAM. It also is allowing DI to start building out about 50 new offices inside the headquarters, creating room to hire more designers and sales people.

DI has also been expanding into other cities, opening offices in Atlanta, Minneapolis and, most recently, Los Angeles.

“The smaller satellite offices have been low risk, and they’ve been very successful,” Trotter said. “We like that and will continue to do that. It puts our people and brainpower closer to projects.”

It also helps the company attract more talent, which in turn leads to more work.


About Dimensional Innovations

Dimensional Innovations - Dimensional Innovations is an award-winning, multi-disciplinary firm that creates dynamic, engaging and interactive solutions that bring brands to life.  DI helps businesses develop exceptional brand experiences to captivate and engage their target market. Works with clients that include 50,000 seat stadiums and history museums to create experiences customers will love. Focuses on the sports, corporate, student life and entertainment industries.

More Information on LSAM

LSAM is based on exciting new technology developed from an entirely new direction.

LSAM is intended for industrial production. It is not a lab, evaluation or demonstration machine, but is instead a full-fledged industrial additive manufacturing system intended for the production of large scale components.

Much of the technology used in Thermwood’s LSAM machines and print process is completely new. Thermwood has already received numerous patents on these revolutionary developments and many more are in the works. In addition to the projects already announced, many other exciting results that LSAM has already achieved are covered by non-disclosure agreements and must be kept secret. LSAM is truly state-of-the-art in the exciting new world of large scale additive manufacturing.

The Secret to LSAM Print Quality...A Different Process

Examples of large parts easily printed on Thermwood's LSAM

Click for More Info on the Thermwood LSAM

Thermwood and Bell 3D Print Helicopter Blade Mold

Posted by Duane Marrett on Thu, Feb 07, 2019

Tags: Thermwood, Announcements, 3D printing, Additive, LSAM, 3D Print, Thermwood LSAM, Additive Manufacturing, Bell, Bell Helicopter, Bell Flight, Helicopter

A joint venture program between Thermwood and Bell has pushed the limits of 3D printing, resulting in what Thermwood believes is the largest 3D printed autoclave capable tool ever made. 

The first half of an 18 foot helicopter blade mold that was 3D Printed on a Thermwood LSAM in just over 3 hours.

The first half of an 18 foot helicopter blade mold that was 3D Printed in just over 3 hours


A common limiting factor within aerospace development programs is expensive, long-lead time tooling.  Bell, not being satisfied abiding by the industry norms, decided to reach out to Thermwood to help solve this challenge.

Glenn Isbell quote regarding Thermwood's LSAM

Video

The Challenge

Shortly after initial conversations with Bell, the Thermwood team offered an opportunity of a partnership centering around the capabilities of their new 60mm melt core technology.  The original challenge for quickly and affordably manufacturing large bond tooling seemed closer to reality than ever before. 

Bell responded to this opportunity in kind by providing Thermwood a model of a closed cavity blade mold measuring approximately 20 feet long, 14 inches wide and 17 inches high. 

The basic tooling requirements were as follows:

  • Must to be printed in one continuous run for vacuum integrity
  • Surface finish must be 32 RMS or better
  • Tooling must be able to withstand 90 psi at 360°F. 
  • Tight tolerances and features were also required to ensure proper mating of the two blade mold halves.

The Process

Upon receiving the model and requirements, the Thermwood team sprang into action. Utilizing their new 60mm melt core technology, they began to print the tool using TechmerPM’s 25% Carbon Fiber reinforced PESU (Polyethersulfone) in one continuous run. Working closely with Thermwood, Techmer has formulated this material specifically for LSAM additive printing.

The printable material has a Glass Transition Temperature of over 400°F and can easily survive common aerospace component cure cycles of up to 360°F, at 90psi. The combination of Techmer's new materials and Thermwood's printing technology, resulted in a print time of one tool half in just 3 hours 8 minutes and an “as printed” weight of 542 pounds.

Thermwood technicians claim the Techmer PESU material prints as easily as ABS, although at a much higher temperature, allowing quality autoclave-capable molds to be made from the high temperature polymer.

Thermwood LSAM 3D Printing an 18 ft helicopter blade mold

This extraordinary achievement was made possible by a new, larger melt core recently installed on Thermwood’s LSAM system at its Development/Demonstration Lab in Southern Indiana. The standard LSAM machine print head housing can be equipped with different capacity melt cores, each offering different minimum and maximum throughputs.

Continuous Cooling Print Process

With Thermwood’s room temperature “Continuous Cooling” print process, the cycle time for each layer is determined solely by how long it takes a particular printed polymer to cool to the proper temperature to accept the next layer.

Only by printing at the proper temperature can you achieve a totally fused, void-free printed structure that will maintain vacuum in an autoclave without a coating. The print head output determines how much material can be printed during the time it takes for the layer to cool. Bigger print heads mean larger parts, not necessarily faster layer to layer print time.

LSAM Print 3D software infared camera view.

Thermographic view of the part being printed

The new 60mm melt core has a measured maximum output of 480 to 570 pounds per hour depending on the polymer being printed and can print over 100 feet of typical print bead (.830” x .200”) per minute. This high print rate, even when processing high temperature material, allows the print bead to be oriented along the length of the tool. This is desirable for Bell, who manufactures large composite parts, because thermal expansion is significantly lower in that direction, minimizing expansion and contraction of the tool with temperature changes.

Internal Printed Support Structure

Another interesting feature of this tool is that the internal printed structure supports the mold without actually contacting or touching the back side of the mold cavity. This means air can flow freely under the entire formed part in the autoclave, making the part curing process easier and more consistent. The ability to incorporate a complex internal design, such as this, is another major advantage of using additive manufacturing for this type of tooling.

Internal 3D Printed support structure in a 18 foot hellicopter blade mold on a Thermwood LSAM

3D printed internal support structures

Thermwood’s LSAM Print 3D slicing software specifically supports programming of involved internal structures such as these.

Internal support structure shown on LSAM Print 3D software.

Internal support structure shown on LSAM Print 3D software.

Internal support structure shown on LSAM Print 3D software.

Internal support structures in  LSAM Print 3D slicing software


Bell Investigates Multiple Manufacturing Processes

Bell is continuing to investigate integrated technologies that support multiple manufacturing processes and tools.  The LSAM is capable of supporting printing processes as well as trim and drill processes to meet aerospace specifications.  Once printed, the team began to machine the bond tool half by utilizing the other aspect of the LSAM system.  The total machining time of the lower blade mold half was 40 hours.  

James Cordell quote regarding Thermwood's LSAM

The completed bond tool was able to maintain Bell’s vacuum standards required for autoclave processing right from the machine, without the need for a seal coating

Part maintaining vacuum during extended testing

Part maintaining vacuum during extended testing

The part steadily holding vacuum during testing

The part steadily holding vacuum during testing


Next Steps

The Thermwood team will print the second half of the blade mold, with the intention of having Bell cure a full molded blade within the final additively-manufactured bond tool, another first.  Further testing will be completed by both Thermwood and Bell teams on PESU printed molds, to continue innovating in this space. 

Final Thoughts

Ken Susnjara Quote on Bell

Thermwood believes recent LSAM technology advances such as Vertical Layer Printing and Changeable Melt Cores (coupled with polymers specially tailored for LSAM processing), are opening exciting new possibilities for additive production of even larger and more technically complex components.

More Information on LSAM

LSAM is based on exciting new technology developed from an entirely new direction.

LSAM is intended for industrial production. It is not a lab, evaluation or demonstration machine, but is instead a full-fledged industrial additive manufacturing system intended for the production of large scale components.

Much of the technology used in Thermwood's LSAM machines and print process is completely new. Thermwood has already received numerous patents on these revolutionary developments and many more are in the works.

LSAM is the Leader in Large Scale Additive Sales

In the last year, Thermwood's LSAM additive manufacturing systems were the clear market leaders in the sale of large scale 3D printing systems for thermoplastic composite materials, selling virtually all systems in the US during the year.

LSAM is truly state-of-the-art in the exciting new world of large scale additive manufacturing.

The Secret to LSAM Print Quality...A Different Process

Examples of large parts easily printed on Thermwood's LSAM

Click for More Info on the Thermwood LSAM

TAHOE Boats Newest Design Uses 3D LSAM Printed Tooling

Posted by Duane Marrett on Thu, Jan 10, 2019

Tags: Thermwood, Announcements, 3D printing, Additive, LSAM, 3D Print, Thermwood LSAM, Additive Manufacturing, T16, White River, Bass Pro, TAHOE Boats

TAHOE Boats, Springfield, MO. formally announced the all-new, revolutionary T16 boat design, engineered with families in mind. Using innovative technology, the T16 delivers an unprecedented lightweight design and affordability with an uncompromising commitment to quality and performance.

One factor that made this boat possible is that the T16 was designed and built in the U.S. leveraging innovative Thermwood LSAM techniques never before used in the marine industry.

White River Marine Group, the marine manufacturing arm of Bass Pro Shops, worked with Thermwood, utilizing Thermwood’s Large Scale Additive Manufacturing (LSAM) system and the latest in LSAM technology to custom-print the tool used to manufacture the boat’s hull – the first time 3D printing has been used on actual boat production at this scale.

This boat-building advancement led to greater efficiency in the planning, design and construction of the T16.

Tahoe Boats T16, which was designed and built in the US.

The Process

Thermwood printed the master pattern for the boat hull at its Development/Demonstration Labs is Dale, Indiana. The pattern was printed in six sections from 20% carbon fiber filled ABS supplied by Techmer PM, who was an active partner in the program. The joints between the pieces were machined, pinned and bonded together and the assembled hull machined to final size and shape. The entire process required only ten days to complete.

T16 Master Pattern being machined on Thermwood LSAM

After printing and machining, the tool was sent to White River, where they applied, sanded and polished a proprietary coating, which they developed earlier, using previously printed parts supplied by Thermwood.

TAHOE Boats T16 Master Pattern 3D Printed on a Thermwood LSAM

Prior to this public introduction, Thermwood was able to use images and videos of the process, which have been on our web site for some time now, however, we respected a request not to disclose the participants or final use of the tool until the boat was publicly released by White River Marine Group.


Tahoe Boats T16, which was designed and built in the US.


Please Click to View Video of the Entire Process

Current Technology Speeds The Process Up Even More

An interesting note is that this type of tool can be produced in even less time with current technology. Using Thermwood’s Vertical Layer Printing (which wasn’t available at the time this tool was made), this type of pattern can now be printed as one piece in just over two days, eliminating the machining between sections and the bonding process. This should cut build time almost in half.

Ken Susnjara on additive manufacturing in the marine industry.

Master patterns, such as this, are used to make molds for high production rates where multiple molds are required. For larger boats or lower production rates, it may be possible to print the mold itself rather than a pattern from which multiple molds are made. Thermwood has also been working on this approach and has recently announced the successful production of a seven foot long, 1/7 scale model of a yacht hull mold using Vertical Layer Printing. Work continues in both these areas.

Even at this early stage of development it is apparent that large scale additive manufacturing could have a dramatic, perhaps even a transformational impact on production methods used in the marine industry, significantly reducing tooling cost and dramatically speeding up the tool building process.

About TAHOE Boats

TAHOE is part of the White River Marine Group family of brands, Bass Pro’s marine manufacturing arm and the largest builder of boats in the world by volume. In addition to TAHOE, White River Marine manufactures America’s favorite boat brands including MAKO, NITRO, RANGER, REGENCY SUN TRACKER, TRACKER, TRITON and others. All White River Marine boats are proudly manufactured in the U.S.

About Techmer PM

Techmer PM is a leading materials design company and works in deep partnership with plastics processors, OEMs, and designers to solve some of their most difficult business, manufacturing, and sustainability challenges. For more than 30 years, they have helped consumer and industrial product manufacturers achieve the finest color, texture, appearance, and functional enhancements for a variety of product applications. Techmer PM is a family-owned company that’s based in Clinton, Tennessee where they operate their largest production facility, as well as five others throughout the U.S. They have been a pioneer in developing polymers for large scale additive manufacturing applications.

More Information on LSAM

LSAM is based on exciting new technology developed from an entirely new direction.

LSAM is intended for industrial production. It is not a lab, evaluation or demonstration machine, but is instead a full-fledged industrial additive manufacturing system intended for the production of large scale components.

Much of the technology used in Thermwood’s LSAM machines and print process is completely new. Thermwood has already received numerous patents on these revolutionary developments and many more are in the works. In addition to the projects already announced, many other exciting results that LSAM has already achieved are covered by non-disclosure agreements and must be kept secret. LSAM is truly state-of-the-art in the exciting new world of large scale additive manufacturing.

The Secret to LSAM Print Quality...A Different Process

Examples of large parts easily printed on Thermwood's LSAM

Click for More Info on the Thermwood LSAM