Boeing, Navy ManTech, NAVAIR AERMIP and Thermwood Collaborate on Large Scale Composite AM Cure Tool

Posted by Duane Marrett on Wed, Jun 30, 2021

Tags: Thermwood, Announcements, Large Scale, Thermwood LSAM, Navy, Composite Tooling, Boeing, Navair, Collaboration, Fleet Readiness Center

Thermwood was a key development partner in a Navy ManTech funded program issued to Boeing Research and Technology. The ManTech program was managed by Advanced Technology International (ATI) for the Office of Naval Research (ONR) with funding provided from the Naval Air Systems Command (NAVAIR) Aircraft Equipment Reliability & Maintainability Improvement Program (AERMIP). Fleet Readiness Center East (FRCE) was a key technical contributor for the low cost composite cure tooling technology development.

Boeing, Navy ManTech, NAVAIR AERMIP and Thermwood Collaborate on Large Scale Composite AM Cure Tool

The Details

Thermwood’s Large Scale Additive Manufacturing (LSAM) machine was selected as the Large Format Additive Manufacturing (LFAM) machine to conduct the technology development. Several unique equipment features of the LSAM machine drove the selection. The high temperature autoclave cure tooling operating environment of 355 degree Fahrenheit and 85 psi provides a challenge for polymer based tool material. Additional composite cure tooling requirements for vacuum integrity and dimensional stability were validated during the development. Neil Graf Office of Naval Research, noted “Composite manufacturing is a strategic technology for future platforms and development of more cost effective tooling solutions would significantly benefit the implementation.”

The Process

FRCE provided a high contour mold line surface to Boeing for generating the composite cure tool. The mold line shape was very aggressive and would stretch the large format additive manufacturing technology processes capability. The spherically shaped portion of the mold line offered the largest challenge, as the unsupported 3D printed angle limitation of approximately 45 degrees provides an interesting obstacle to overcome for the spherical mold line section of the tool. Boeing rotated the 3D print plane 35 degrees to avoid encroachment of the build angle limitation.

Final 3D Print Model

Final 3D Print Model

The new innovative build plane approach eliminated the requirement for temporary support material for the aggressive mold line shape. The new build angle would test the LSAM machine limits in an area never explored previously. TechmerPM PESU CF 1810 high temperature print material was used for the composite cure tool. High temperature materials present additional challenges during print over low temperature materials such as ABS CF. Two interim support features were added to compensate for the center of gravity shift of the print. The LSAM machine performed flawlessly during the composite cure tool print. The tool was printed in 7 hours and 26 minutes using 610 lbs of material.

Composite Cure tool printing on Thermwood LSAM

Composite Cure Tool printing on Thermwood LSAM

The composite cure tool was machined in 53 hours using the LSAM gantry router machine. The tool datum features, and removal of interim members, were machined prior to removal from the bead-board. The Thermwood LSAM machine offers the ability to machine and 3D print on a single platform. The composite cure tool mold line part surface achieved at surface profile tolerance of .020” (+/-.010”).

Machining the Composite Cure Tool on Thermwood LSAM

Machining the Composite Cure Tool on Thermwood LSAM

The Boeing Research and Technology (BR&T) laboratory performed functional testing on the LFAM composite cure tool to ensure vacuum integrity and dimensional stability requirements were reached. The LFAM tool performed as expected and achieved all requirements. Several composite parts were fabricated from the tool. The tool durability was assessed during the multiple autoclave cure cycles and fabricated (3) composite parts. The tool maintained dimensional stability and vacuum integrity throughout the functional testing and composite part manufacturing.

LFAM tool after Autoclave Cure

LFAM tool after Autoclave Cure

The composite cure tool was printed and NC machined on Thermwood’s Large Scale Additive Manufacturing (LSAM) 1020 machine. The LFAM technology cost savings was estimated at 50% compared to traditional tool fabrication methods, and reduced tool fabrication lead-time by 65%. The cost savings and tool fabrication cycle time reduction could provide enormous benefit to any organizations performing low volume or custom composite part fabrication and repair.

Composite Part Fabricated from LFAM Tool

Composite part fabricated from LFAM tool

Nondestructive Inspection (NDI) was performed on the composite parts fabricated on LSAM tools. The NDI results did not indicate any porosity. Due to the complex shape of the composite demonstration part several NDI process were employed. X-ray and C-Scan results did not reveal any delaminations or defects.

The Bottom Line

The program benefited from a cooperative effort among several contributors to achieve success. The partnership between industrial technology leaders, Boeing and Thermwood coupled with the Office of Naval Research’s drive to transition technology, led to the successful program. “Collaborations such as this help expand the scope of capabilities of emerging large scale additive technology by addressing real world challenges that would be difficult for any single entity to define and address by itself. We look forward to new challenges moving forward”, says Thermwood CEO, Ken Susnjara.

Additional development is key to expand LFAM composite cure tooling implementation. Boeing Associate Technical Fellow Michael Matlack commented “The program provided significant results in validating additive manufacturing as a viable method of producing lower cost, capable tooling with substantial time savings over traditional methods.”

LSAM Info Request

Why LSAM?

Posted by Duane Marrett on Tue, May 11, 2021

Tags: Thermwood, Announcements, Thermwood LSAM, Why LSAM

Companies have been choosing Thermwood’s LSAM large scale additive manufacturing systems for their thermoplastic composite large part production.  In a newly released video, Scott Vaal, Thermwood’s LSAM Product Manager, addresses the question of "Why LSAM?"

He addresses key aspects of the large scale additive manufacturing market and LSAM’s position in it. This video also addresses the current state of the art in additive print technology, offers a quick overview of the broad LSAM product line, slicing software, industry collaboration, additive system reliability, service, support, upgrade ability, plus other issues important to potential users and anyone interested in large scale additive manufacturing of thermoplastic composites.

Thermwood has found that many companies exploring large scale additive manufacturing don’t have a clear understanding of the current state of the market, the available technology or the capabilities of systems currently available. This video is intended to add a level of understanding, comfort and confidence that capable, proven and reliable large scale additive systems are not only available, but are already successfully operating in major industries every day, generating significant benefits and profits.

Largest Selection of Large Scale Additive Manufacturing Systems

Largest Selection of Large Scale Additive Manufacturing Systems

Largest Selection of Large Scale Additive Manufacturing Systems

With the introduction of the smaller LSAM Additive Printers plus these new wide table flagship LSAMs, Thermwood’s large scale additive manufacturing product line is, by far, the broadest available anywhere, with LSAM models from 5x5 foot to these new fifteen foot wide flagship models.

Learn More About Large Scale Additive Manufacturing Systems from the industry leader, LSAM by Thermwood.

LSAM Info Request

Thermwood Expands LSAM Product Line Yet Again

Posted by Duane Marrett on Tue, Apr 20, 2021

Tags: Thermwood, Announcements, Thermwood LSAM

Thermwood Corporation, manufacturer of the highly successful LSAM large scale thermoplastic composite additive systems, has announced the availability of even larger size machines than we currently offer.

The LSAM additive manufacturing system line is already the broadest in the industry with additive printers from a 5x5 foot table to large dual gantry print and trim systems up to 10x40 foot. Machines longer than 40 foot are available, but several 10x40 systems are the largest built to date.

LSAM 1520 Shown

LSAM 1520 Shown

With this new announcement, the large dual gantry print and trim machines are now available in a 15 foot width in addition to the current 10 foot width tables. As with the ten foot wide tables, the new fifteen foot wide table machines are available in lengths from twenty foot on, in ten foot increments.

New Heavier Gantry Design

The new machines utilize the new wide gantry design that was first developed for Thermwood’s LSAM 1010. The LSAM 1010 has both a print head and a trim head mounted on the same gantry, hence the need for a wide gantry even though the table is only 10x10 foot. The dual head combination on the 1010 weighs over 7,000 pounds, requiring a significant engineered gantry structure.

Larger Gantry Shown on an LSAM 1010

Larger Gantry shown on an LSAM 1010

The smallest table length available in the fifteen foot width LSAM is twenty foot, however, because of the modular design of the table and support walls, this length can be increased by ten foot increments. The most popular table lengths to date for the ten foot wide table LSAM machines have been twenty foot and forty foot.

40mm or 60mm Print Core Available

The new machines are equipped with the large LSAM print head structure which can be equipped with either the 40mm or 60mm print core. The 40mm core can print most polymers at about 200 pounds per hour while the 60mm core can print at over 500 pounds per hour. They can also be equipped with Thermwood’s patented Vertical Layer Print system, which makes it technically possible to print parts up to fifteen foot wide and as tall as the length of the table.

LSAM 1540 Shown

LSAM 1540 Shown

Same Powerful Features

The new machines are equipped with all the advanced features of the entire LSAM line including the thermal sensor layer automation system which automatically controls bead temperature at layer fusion producing virtually perfect bonding between layers.

As the market becomes more comfortable with the capability and reliability of LSAM technology, the new sizes open interesting opportunities in areas where really, really large parts are needed.

Three Print Head Options Available

Thermwood offers three print head options on various machines with maximum print rates of 100, 200 and over 500 pounds per hour. Although many believe that print rate determines how fast a layer can be printed, it is actually polymer cooling that determines how much time is needed between layers.

Print head output then determines how much bead can be printed in that time and thus how large a part that can be printed by that print head using that polymer. The Thermwood LSAM 60mm print head with 500 pound per hour maximum print rate can print the largest part layers possible today.

Largest Selection of Large Scale Additive Manufacturing Systems

Largest Selection of Large Scale Additive Manufacturing Systems

Largest Selection of Large Scale Additive Manufacturing Systems

With the introduction of the smaller LSAM Additive Printers plus these new wide table flagship LSAMs, Thermwood’s large scale additive manufacturing product line is, by far, the broadest available anywhere, with LSAM models from 5x5 foot to these new fifteen foot wide flagship models.

Learn More About Large Scale Additive Manufacturing Systems from the industry leader, LSAM by Thermwood.

LSAM Info Request

Purdue University to Establish Thermwood LSAM Research Laboratory

Posted by Duane Marrett on Tue, Apr 13, 2021

Tags: Thermwood, Announcements, Purdue, Thermwood LSAM, Thermwood LSAM Research Laboratory

Purdue University’s Composites Manufacturing Simulation Center (CMSC) and Thermwood Corporation have agreed to establish a large scale additive manufacturing laboratory to perform industry-funded research into large scale composite thermoplastic additive manufacturing.

Purdue Composites Manufacturing and Simulation Center

Thermwood LSAM Logo

The new facility will be located in Purdue’s Indiana Manufacturing Institute located in the Purdue Research Park in West Lafayette, Indiana and will be staffed and operated by Purdue CMSC personnel. The official name for the new facility is the Thermwood LSAM Research Laboratory at Purdue University”.

LSAM Additive Printer (10'x5')

Thermwood LSAM Additive Printer 10'x5'

About the Thermwood LSAM Reseach Laboratory at Purdue University

The new laboratory will be equipped with an LSAM 105 (ten-five) Large Scale Additive Printer and a corresponding 5 axis LSAM Additive Trimmer plus a variety of support systems. This installation is capable of printing and trimming complex geometries up to five feet by ten feet by four feet tall at print rates of up to 200 lbs. per hour. Commercial maximum print temperature for LSAM printers is usually limited to 450oC, however, this particular system has been modified to allow testing at even higher temperatures for experimentation with innovations in materials normally not used in additive manufacturing.

This effort will be enhanced with the newly announced ability of Thermwood’s LSAM large scale additive manufacturing systems to measure and precisely control the temperature of a printed layer at the instant a new layer is deposited. This will support research into the very core of the additive print process and will serve to provide validation of Purdue’s extensive additive manufacturing simulation capabilities for large scale additive manufacturing.


Not only will this effort improve the overall quality of large scale additive printing but it should also increase our knowledge and understanding of the basic process of fusing layers together into a homogeneous structure”
says Ken Susnjara, Founder, Chairman and CEO of Thermwood.


Extrusion deposition composites additive manufacturing is a major innovation that will contribute to the development of tailored products with unique performance and just in time availability.”  
Adds Dr. R. Byron Pipes, Executive Director of Purdue’s Composite Manufacturing & Simulation Center, the research organization where the LSAM system will be installed.


Purdue plans to partner with industry to provide services to enhance, encourage and expand the adoption of large-scale additive manufacturing for diverse industrial applications. They also plan to work with polymer suppliers to refine formulations and determine the ideal processing parameters necessary to produce the absolute highest quality large scale printed parts possible.

Collaborative efforts of this type bring together diverse organizations that each specialize in different aspects of this emerging technology and often produce results that none of the participants could possibly achieve on their own. Both Purdue and Thermwood are confident that this will be the outcome of their collaborative effort.

About the Composites Manufacturing and Simulation Center

The Composites Manufacturing and Simulation Center (CMSC) of the College of Engineering and the Purdue Polytechnic are located in over 30,000 square feet of the Indiana Manufacturing Institute building. CMSC consists of faculty experts in composites manufacturing, a professional staff of doctoral degree engineers, a support staff and research students in doctoral, masters and bachelor’s degree programs of the Schools Aeronautics and Astronautics, Chemical Engineering and Materials Engineering, as well as, the Department of Aviation Technology in the Polytechnic.

Purdue Manufacturing and Composites Research Center

A comprehensive set of laboratories is available at the IMI for the study of composites manufacturing processes, characterization of composite materials, and the validation of simulation software essential to development and verification of the digital twin concepts in composite manufacture and performance. Focus specialties include extrusion deposition additive manufacturing, composites autoclave processing of continuous fiber systems, compression and injection molding of discontinuous fiber composites, prepreg impregnation, infusion molding, sheet forming, complex mold-forming and hybrid continuous/discontinuous fiber systems. Workflow simulations are being developed to provide for end-to-end digital twins of these manufacturing processes. Accordingly, manufacturing informed performance predictions are a direct outcome of these workflow analyses.

3DEXPERIENCE Education Center of Excellence in Advanced Composites

To advance the development of digital twin, digital thread and model-based engineering, Dassault Systèmes and CMSC established the 3DEXPERIENCE Education Center of Excellence in Advanced Composites on October 28, 2020. The simulation center was founded on a seven-year partnership between Purdue University and Dassault Systèmes (2013-2020) and it is expected that this new engagement will bring significant benefits to the new relationship with Thermwood as the partners work together to bring the advantages of the digital age to society.

3DEXPERIENCE Platform and Thermwood LSAM

Together, they will advance the digital enterprise by developing the human talent essential to this new paradigm and by utilizing the Thermwood LSAM technology and the 3DEXPERIENCE platform to exercise digital twins of complex composites manufacturing and performance to demonstrate the power to predict phenomena that are understood today only by empirical experiences. The Partnership will work together to introduce these concepts to a wide range of industries within the advanced composites community from the original equipment manufacturer level to the supply chain industries. The philosophy of these relationships will be to create a learning environment at multiple levels – from advanced research in manufacturing and performance of advanced composites to the engagement of students at all levels needed to build the workforce of the future for Industry 4.0.

LSAM Info Request

Thermwood Announces Completion of the First LSAM 1010

Posted by Duane Marrett on Wed, Mar 31, 2021

Tags: Thermwood, Announcements, Thermwood LSAM, LSAM 1010

Thermwood has completed the first of a new type of additive print and trim system, the LSAM 1010. This is a fixed table, high wall system with both print and trim head mounted on a single gantry. Although with a ten foot by ten foot table, it is a bit smaller than the larger dual gantry flagship LSAM systems, it does require a significantly larger gantry.

LSAM 1010 Shown

The LSAM 1010 can both print and trim, but not at the same time. It uses the same 40mm print head that is standard on the larger LSAM systems and the same five axis trim head. It has the same 5 foot high print and trim capability of the larger machines. The addition of both of these on a single gantry adds two major new requirements.

Thermwood LSAM 1010 with print and trim head on same gantry

Two Major New Requirements

First, the gantry must be significantly longer to accommodate the width of both heads, while also allowing both heads to cover the entire table.

Thermwood LSAM 1010 with open doors

Also, the gantry must be significantly stronger to rigidly support both the print and trim head, which together weigh well over 7,000 pounds, resulting in a live load (the parts of the machine that actually move) of over 18,000 pounds. Despite the weight, the machine can move at speeds up to almost three feet per second.  This is not a small machine.

Thermwood LSAM 1010 with new larger gantry

New M400 Helps Build Large Machines

The production of this new gantry has been made possible by the commissioning of Thermwood’s new M400 five axis metal working system which can machine parts up to 35 feet long. The gantry design uses Thermwood’s slot and tab construction method which produces engineered steel structures that are extremely strong and stiff. 

Thermwood's M400 Helps Build Large Machines

More Details About the LSAM 1010

Since the LSAM 1010 has a fixed table, there is no practical part weight limitation. 

The LSAM 1010 has the same 200 lb maximum print rate capability of the larger flagship LSAM systems but is still priced well under the LSAM 1020, which is the smallest dual gantry LSAM available. 

The LSAM 1010 is also available as a “print only” machine for companies who already have the necessary machining capacity, bringing the price down even more. 

The LSAM 1010 is ideal for companies whose size requirements fit the available envelope and where a sequential process production rate (print and then trim) is adequate. It is also ideal for companies who need relatively large, heavy parts but don’t need trim capability. The lower price point also makes the LSAM 1010 easier to cost justify for a wider variety of end applications. 

Largest Selection of Large Scale Additive Manufacturing Systems

Largest Selection of Large Scale Additive Manufacturing Systems

The LSAM 1010 is part of the LSAM product line which offers the largest selection of large scale additive manufacturing systems available anywhere. There is a system available for about any large scale additive requirement from a 5x5 Additive (Print Only) Printer to giant, dual gantry, print and trim machines up to 40 foot long. Longer machines are available however, 40 foot are the longest machines produced to date. 

Large Scale Additive Manufacturing Systems from the industry leader, LSAM by Thermwood.

Learn More About Large Scale Additive Manufacturing Systems from the industry leader, LSAM by Thermwood.

LSAM Info Request

Thermwood Announces Lower Cost LSAM Additive Systems

Posted by Duane Marrett on Tue, Mar 16, 2021

Tags: Thermwood, Announcements, Thermwood LSAM, LSAM Additive Printers

Thermwood Corporation, manufacturer of some of the largest composite thermoplastic additive manufacturing systems operating in industry today, has announced the availability of a new line of lower cost “print only” LSAM systems, called LSAM Additive Printers.

Thermwood’s current LSAM line of large scale, dual gantry, “print and trim”, near-net-shape additive manufacturing systems use an advanced print technology that produces high quality, fully fused products from a wide variety of reinforced composite thermoplastic polymers, including materials that process at high temperature like PSU, PESU, and PEI.

These systems are being used primarily to produce molds and tooling, most for aerospace and industrial production applications.

LSAM Additive Printer 10'x5' Table Shown

LSAM ADDITIVE PRINTER

Thermwood Corporation, manufacturer of some of the largest composite thermoplastic additive manufacturing systems operating in industry today, has announced the availability of a new line of lower cost “print only” LSAM systems, called LSAM Additive Printers.

Thermwood’s current LSAM line of large scale, dual gantry, “print and trim”, near-net-shape additive manufacturing systems use an advanced print technology that produces high quality, fully fused products from a wide variety of reinforced composite thermoplastic polymers, including materials that process at high temperature like PSU, PESU, and PEI.

These systems are being used primarily to produce molds and tooling, most for aerospace and industrial production applications.

SMALL BUT POWERFUL

NEW 30MM PRINT HEAD

To accommodate the request for a lower cost system, Thermwood refined and updated the gantry structure of its highly successful 5 axis CNC routers.  This machine was re-engineered to use the incredibly strong “slot and tab” structural steel approach used on flagship LSAM machines. The same table, base structure and servo drives used on their five axis CNC routers could be used pretty much as is. With these changes the “LSAM Additive Printer” was born.

Although smaller than the flagship systems, it is capable of producing large parts at temperatures up to 450° C, with overall size limited primarily by the table size and working envelope. 

Available Sizes

The new LSAM Additive Printers are all fixed gantry, moving table designs with table sizes of 5’x5’ and 5’x10’ and are capable of printing parts up to 4’ high.  The 5’x10’ machines are available in two styles, 5’ wide with 10’ of front to back motion or 10’ wide with 5’ of front to back motion. Maximum table print weight is 1,000 pounds, however, the 10’ wide 5’ deep machine is available with a dual servo drive which doubles the weight carrying capability. It is planned to equip the 5’ wide 10’ deep version with a Vertical Layer Printing option which will allow it to vertically print parts up to ten feet tall.

Trimming Printed Parts

For trimming printed parts, Thermwood recommends our new LSAM Additive Trimmer, which is available in the same table sizes as these new LSAM Additive Printers.  It is available with up to 5’ of vertical travel, allowing it to trim completely around and over the top of the largest part the LSAM Additive Printer can print. As an added benefit, with both an LSAM Additive Printer and an LSAM Additive Trimmer, you can print and trim at the same time.

Although having a new LSAM Additive Printer plus an LSAM Additive Trimmer requires purchasing two machines, the combined cost of both is just over a third of the cost of an LSAM 1020 (which is currently the smallest flagship LSAM system that can both print and trim at the same time). The LSAM 1020 does have a much larger table, faster print head and the ability to do vertical layer printing up to 20 feet long, however, if you don’t need those capabilities, the new LSAM Additive Printers may be an answer. If you already have trim capability, the cost can be even lower.

lsam_trimmer_front_cropped

Same Powerful Features

The same powerful, feature rich LSAM control used on the large flagship LSAM systems, along with all its unique patented additive print features is standard on the new LSAM Additive Printers. A system for drying and conveying pelletized polymer material is also included as is a liquid chilling system to maintain temperature control on vital systems. This is especially important when processing high temperature materials.

Optional Enclosure

An optional enclosure that surrounds the machine is available.   The machine with this full enclosure can also be built to meet European CE standards.

LSAM Additive Printer (10'x5') table with optional enclosure

Optional Dual Hopper Dryer

The machine comes standard with a single hopper material dryer, however, an optional dual hopper dryer is also available for applications that change materials often.

Thermal Sensor Layer Automation System

Thermwood’s new Thermal Sensor Layer Automation System is also available on the LSAM Additive Printers. This is an exciting new system that automates the print process to easily and automatically obtain the highest quality layer to layer fusion.

Thermal Sensor Layer Automation System

With this system, a servo controlled thermal sensor, which travels with and rotates around the print nozzle, measures the temperature of the bead an instant before a new bead is added. This data is sent to the control which automatically adjusts print speed to print at the precise temperature that results in the best bead fusion for that particular polymer. Thermwood’s

LSAM print technology already produces the best quality, strongest large scale additive parts and this system not only makes it better but also easier.

Same Powerful Print 3D Slicing Software

The same Thermwood LSAM Print 3D slicing software used on all the other LSAM systems is used to program LSAM Additive Printers. Several levels of software training are available.

The Bottom Line

This new LSAM Additive Printer is intended to introduce LSAM additive technology to a whole new level of application and customer. It targets companies that want to print top quality, large composite thermoplastic parts, but don’t really need, nor can they cost-justify, the really large LSAM systems. These new systems also target companies who already have sufficient trimming capability and may only need a quality print function. Applications include industrial fixtures, molds (including high temperature molds), tooling, foundry patterns, and hundreds, if not thousands of similar applications.

With the addition of the LSAM Additive Printers, Thermwood now offers the largest selection of large scale additive manufacturing systems for thermoplastic composite materials in the industry with models available for just about every application and budget.

LSAM Broad Line of Additive Manufacturing Systems

LSAM Info Request

Thermwood LSAM 2020 Year in Review

Posted by Duane Marrett on Wed, Dec 09, 2020

Tags: Thermwood, Announcements, Video, 3D printing, LSAM, Thermwood LSAM, LSAM MT, LSAM 1010, LSAM 1020, 2020, Review

LSAM_SeriesRV3_2020_mod.fw-1Thermwood LSAM 2020 - Year in Review

The last 12 months have seen an incredible level of disruption in all industries, fueled in large part by the coronavirus pandemic.  COVID-19 has impacted nearly every aspect of the global economy, from manufacturing to supply chains to travel.

The additive industry wasn’t spared, with event cancellations and disruptions to regular business becoming the norm.  Thermwood pivoted in 2020 to continue our focus on innovation and development with our LSAM (Large Scale Additive Systems) line, and have made many new discoveries and advancements in our additive manufacturing program.

Below, we highlight some of the notable LSAM moments from 2020 that leaves us hopeful for the future of large scale additive manufacturing in 2021 and beyond:

LSAM Info Request


March 5th - Thermwood Announces Another New LSAM Model

Thermwood Introduces the LSAM 1010

To address the need for a lower cost enclosed additive machine, Thermwood developed the LSAM 1010. This system uses the walls from the larger LSAM systems with the gantry, control and sub-systems from the LSAM MT. 

The LSAM 1010 features a fixed 10 foot by 10 foot table. A single moving gantry carries both the print and trim heads as on the MT and, like the MT, it can both print and trim (but not at the same time). The print and trim heads on all Thermwood LSAMs are the same, so all machines can process virtually any reinforced composite thermoplastic materials available today.

With the introduction of the LSAM 1010, it became clear that Thermwood is committed to responding to customer requests and providing its industry-leading LSAM additive manufacturing technology in a variety of configurations to better fit varying customer requirements.


March 17th - Thermwood LSAM 1020 Quickly 3D Prints a Multi-Piece Foundry Pattern

 

This was a great exercise to demonstrate the capabilities of an LSAM to quickly make a multi-piece foundry pattern out of ABS (20% carbon fiber fill). 

The pattern was printed on an LSAM 1020 in 6 hours and 40 minutes, and machined on a Thermwood 5 Axis Model 90 (because of other projects that were pending on the LSAM).

More info


June 25th - Thermwood Builds Massive Metalworking Machine to Increase LSAM Production

Thermwood Builds Massive Metalworking Machine to Increase LSAM Production

Thermwood designed, fabricated and put into operation the largest machine it has ever built. The metalworking machine, dubbed internally as the M400, weighs 51 Tons (103,000 pounds) and is mounted on a special isolated, double steel reinforced concrete pad. It has a 15 foot wide, 35 foot long floor level steel table that by itself weighs 21,000 pounds.

More info


August 27th - Thermwood LSAM MT VLP Prints a High Temperature Part

In August, Thermwood demonstrated it's VLP (Vertical Layer Printing) capabilities on an LSAM MT 1010.  The high-temperature part was printed out of Techmer PM blended 25% carbon fiber filled PSU/PESU. 

Total print time for the project was 16 hours and 40 minutes, and the final weight of the part was 1,190 lbs.  The final part dimensions were 108.6" (x) x 33" (Y) x 45" (Z).

More info


September 17th - Thermwood and General Atomics Partner on Additive Tool with $50,000 Cost Savings

In September, Thermwood partnered with General Atomics to produce a CNC trim tool.  The tool was printed from ABS (20% Carbon Fiber Filled) in 16 hours.  Total machining time was 32 hours.  The final part weighed 1,190 lbs, and represented a cost savings of around $50,000 when compared to traditional methods.

Total lead time for the part decreased from 6-8 weeks to less than 2 weeks by utilizing the powerful LSAM system.

More info


September 24th - Take a Tour of the Thermwood LSAM

Also in September, LSAM Product Manager, Scott Vaal, took us on an informative tour of the Thermwood LSAM.

In this tour, Scott explains all the different aspects of the Thermwood LSAM and provides insight into this unique solution for large scale additive manufacturing.  

More info


October 22nd - A New Approach to 3D Printing a Yacht Hull Mold

A New Approach to 3D Printing a Yacht Hull Mold

In October, Thermwood printed a several sections from a 51 foot long yacht hull mold to demonstrate how only a single mold may be needed for the manufacture of larger vessels, such as yachts. 

The printed sections of this test mold were made of carbon fiber reinforced ABS from Techmer PM. ABS was chosen because of its physical properties and relatively low cost compared to other reinforced thermoplastics

More info


LSAM Info Request

Another Thermwood LSAM 10'x40' is Ready to Ship Out!

Posted by Duane Marrett on Fri, Oct 11, 2019

Tags: Thermwood, 3D printing, Additive, LSAM, 3D Print, Thermwood LSAM, Additive Manufacturing

Another Thermwood LSAM 10'x40' featuring optional VLP (Vertical Layer Printing) capability is ready to be packed up and shipped out! Look how small this massive LSAM makes the Model 70 10'x30' in production next to it look!
More Info on LSAM: http://bit.ly/2KheM0r

Overhead view of another 10'x40' Thermwood LSAM ready to be packed up and shipped out!
Overhead view of another 10'x40' Thermwood LSAM ready to be packed up and shipped out!


Some of the guys who helped build this latest LSAM pose with the machine.
Some of the guys who helped build this latest LSAM pose with the machine.


Looking down the table from the trim side to the print side of this 10'x40' Thermwood LSAM.
Looking down the table from the trim side to the print side of this 10'x40' Thermwood LSAM.


Optional VLP (Vertical Layer Printing) on this latest 10'x40' Thermwood LSAM.
Optional VLP (Vertical Layer Printing) on this latest 10'x40' Thermwood LSAM.


Perspective!
Perspective!


Another view from the trim side of this latest 10'x40' Thermwood LSAM.
Another view from the trim side of this latest 10'x40' Thermwood LSAM.


Look how small this massive LSAM makes the Model 70 10'x30' in production next to it look!Look how small this massive LSAM makes the Model 70 10'x30' in production next to it look!


A quick side-view of this latest 10'x40' Thermwood LSAM.


More Information on LSAM

LSAM is based on exciting new technology developed from an entirely new direction.

LSAM is intended for industrial production. It is not a lab, evaluation or demonstration machine, but is instead a full-fledged industrial additive manufacturing system intended for the production of large scale components.

Thermwood has already applied for over 45 separate patents on various aspects of this new technology (more than half of which have already been granted) and more will be coming as development continues. LSAM is truly “state of the art” in this exciting new world of Large Scale Additive Manufacturing. 

LSAM produces superior printed parts.

Click for More Info on the Thermwood LSAM

Air Force Research Laboratory, Boeing and Thermwood Partner on Low Cost Responsive Tooling Program

Posted by Duane Marrett on Thu, Aug 08, 2019

Tags: Thermwood, Announcements, Additive, LSAM, Thermwood LSAM, Additive Manufacturing, Boeing, Air Force, Air Force Research Laboratory

The United States Air Force Research Laboratory (AFRL) Manufacturing and Industrial Technology Division (ManTech) is interested in large scale polymer-based additively manufactured (AM) composite cure tooling. Boeing submitted an idea to ManTech’s Open BAA to evaluate the current state of additive manufacturing technology with respect to the fabrication of low cost autoclave capable tools for the production of composite aerospace components. The initial demo tool is for an AFRL concept aircraft fuselage skin (Figure 1). Boeing contracted Thermwood to demonstrate capability of their Large Scale Additive Manufacturing (LSAM) machine.  

Air Force Research Laboratory Conceptual Aircraft & Full-Scale Tool

Figure 1: Air Force Research Laboratory Conceptual Aircraft & Full-Scale Tool


Please click below for video


The Thermwood LSAM machine offers an innovative additive manufacturing machine capability with its Vertical Layer Printing (VLP). The vertical layer printing AM process provides a significant cost benefit by increasing the size components can be printed, thus reducing assembly cost for large tools. To validate the VLP process using high temperature autoclave-capable materials, Boeing and AFRL chose to 3D print a section of the large tool to evaluate the LSAM functionality. The Mid-Scale tool was printed on Thermwood’s LSAM  Additive Manufacturing Demonstration machine in Southern Indiana using a 40mm print core running 25% carbon fiber reinforced Polyethersulfone (PESU).

Mid-Scale Tool 3D Printing on Large Scale Additive Manufacturing (LSAM)
Figure 2: Mid-Scale Tool 3D Printing on Large Scale Additive Manufacturing (LSAM)

The initial test tool has the same width, height and bead path as the final mold, incorporates all major features of the final mold, but compressed in length being only 4 feet long. The final tool will be over 10 feet long. The Mid-Scale tool set a milestone achievement as the first high temperature tool printed using the VLP system. The Mid-Scale tool required 5 hours, 15 minutes to print with a print weight of 367 lbs. After final machining, the tool was probed for surface profile and tested for vacuum integrity. The tool passed room temperature vacuum test and achieved dimensional surface profile tolerances. The Full-Scale tool will weigh approximately 1400 pounds and require 18 hours to print.

Machining (left) and Probe (right) operation on a Thermwood LSAMFigure 3: Machining (left) and Probe (right) operation on a Thermwood LSAM

The program is progressing to the next step, producing a full size tool. Boeing and the Air Force are carefully documenting all operational parameters of the project to transition the technology to production programs. Additive manufactured autoclave tooling offers significant advantages over traditional methods of producing these tools. 3D printed tooling is less expensive and can be fabricated in days or weeks rather than months.

AFRL is very interested in tooling approaches for the Low-Cost Attributable Technology (LCAAT) program which has a goal to break the cost growth curve and field new systems faster.  AFRL Program Manager Andrea Helbach says, “We are interested in additively manufactured tooling’s ability to reduce the cost and time to procure autoclave capable tooling.  Additionally, AM tooling supports changes in vehicle design with minimal non-recurring expenses.” 

“Future fielded low cost, but capable UAV’s will need a responsive materials and manufacturing processes strategy” says Craig Neslen, LCAAT Initiative Manufacturing Lead.  “Additive manufactured composite tooling is one of many technologies being evaluated to ensure the industrial base can handle future manufacturing surge requirements as well as accommodate periodic system tech refresh activities which could necessitate minor vehicle design changes at an acceptable cost.”  


More Information on LSAM

LSAM is based on exciting new technology developed from an entirely new direction.

LSAM is intended for industrial production. It is not a lab, evaluation or demonstration machine, but is instead a full-fledged industrial additive manufacturing system intended for the production of large scale components.

Thermwood has already applied for 19 separate patents on various aspects of this new technology (several have already been granted and more will be coming as development continues). LSAM is truly “state of the art” in this exciting new world of Large Scale Additive Manufacturing. 

The Secret to LSAM Print Quality...A Different Process

Examples of large parts easily printed on Thermwood's LSAM

Click for More Info on the Thermwood LSAM

Ascent Aerospace Invests in Additive Manufacturing

Posted by Duane Marrett on Wed, Jul 17, 2019

Tags: Thermwood, Announcements, Why Purchase a Thermwood, Additive, LSAM, Thermwood LSAM, Additive Manufacturing, Ascent Aerospace

Ascent Aerospace Invests in Thermwood LSAM Additive Manufacturing

Santa Ana, CA - July 2019 – Ascent Aerospace, a leading provider of aerospace tooling systems, factory automation and integration solutions, is excited to announce its recent investment of a Large Scale Additive Manufacturing (LSAM) machine from Thermwood Corporation, a technology leader and manufacturer of CNC and 3D printing equipment based in Dale, IN.

With a 10’ x 40’ fabrication area, Ascent’s LSAM machine will be the largest available in the aerospace market, allowing for both the printing and machining of a wide range of thermoplastic composite materials.

With a 10’ x 40’ fabrication area, Ascent’s LSAM machine will be the largest available in the aerospace market, allowing for both the printing and machining of a wide range of thermoplastic composite materials.

The use of 3D printing in the aerospace tooling sector has continued to mature over the last several years and is accelerating in usage; with this, Ascent Aerospace plans to answer the industry's call and take additive technology to a new level by leveraging its deep expertise in tooling to commercialize production ready additive solutions. As a new tooling option for its customers, Ascent intends to utilize the LSAM machine to bring tools such as layup molds, masters, trimming/drilling fixtures and vacuum holding fixtures to market faster than ever before. The LSAM machine will be co-located with Ascent's composite tooling shop, autoclave and clean room in Santa Ana, California, and will allow Ascent to build targeted tools lighter and more efficiently, providing time and cost savings to its global customers.

The LSAM machine will have an industry leading build area, providing aerospace customers the opportunity to benefit from large-scale printed composite tooling. By combining this technology with Ascent's in-house tooling expertise and heritage engineering, it will be possible to fabricate and deliver fully functional select fixtures and molds with significantly reduced lead-times of a traditional metallic tool. The wide variety of materials that are compatible with the LSAM, such as ABS, Polycarbonate, Nylon, and PESU resins with reinforcing compounds, will further expand the selection of tooling solutions that Ascent will bring to the market. 

Michael Mahfet, the CEO of Ascent Aerospace, stated, "Our investment in the LSAM represents the next milestone in Ascent's multi-year technology roadmap and realization of expansive efforts studying the benefits of additive manufacturing within the aerospace tooling market. This capability positions us to remain the leader in new and innovative tooling solutions, supporting strong collaboration with our customers and supplementing our in-house, vertically integrated design and fabrication capabilities."

Ascent Aerospace is committed to challenging the industry norms, improving manufacturing processes and providing customers with the best solutions to meet their demands.

About Ascent Aerospace

Ascent Aerospace is a world renowned, single-source provider of production and automated assembly systems for the aerospace and defense industry. As the largest tooling group in the industry, Ascent produces a full suite of both mold and assembly tooling required for the aerospace manufacturing market, including the largest Invar molds ever made for aerospace.  As an automation provider and production system integrator, Ascent works with customers to develop their project and see it through from process engineering, to build and installation to ensure it is an efficient and cost effective solution. Visit www.ascentaerospace.com for more information.

More Information on LSAM

LSAM is based on exciting new technology developed from an entirely new direction.

LSAM is intended for industrial production. It is not a lab, evaluation or demonstration machine, but is instead a full-fledged industrial additive manufacturing system intended for the production of large scale components.

Much of the technology used in Thermwood’s LSAM machines and print process is completely new. Thermwood has already received numerous patents on these revolutionary developments and many more are in the works. In addition to the projects already announced, many other exciting results that LSAM has already achieved are covered by non-disclosure agreements and must be kept secret. LSAM is truly state-of-the-art in the exciting new world of large scale additive manufacturing.

The Secret to LSAM Print Quality...A Different Process

Examples of large parts easily printed on Thermwood's LSAM

Click for More Info on the Thermwood LSAM